
Chapter1
Preliminaries

In this chapter, we review the basic concepts of a Hilbert space and (bounded linear) oper-
ators on a Hilbert space, which will recur throughout the book.

1.1 Hilbert space and operators

Definition 1.1 A complex vector space H is called an inner product space if to each pairs
of vectors x and y in H is associated a complex number 〈x,y〉, called the inner product of
x and y, such that the following rules hold:

(i) For x,y ∈ H, 〈x,y〉 = 〈y,x〉, where the bar denotes complex conjugation.

(ii) If x,y and z ∈ H and α,β ∈ C, then 〈αx+ βy,z〉 = α〈x,z〉+ β 〈y,z〉.

(iii) 〈x,x〉 ≥ 0 for all x ∈ H and equal to zero if and only if x is the zero vector.

Theorem 1.1 (SCHWARZ INEQUALITY) Let H be an inner product space. If x and y ∈
H, then

|〈x,y〉|2 ≤ 〈x,x〉〈y,y〉 (1.1)

and the equality holds if and only if x and y are linearly dependent.
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Proof. If y = 0, then the inequality (1.1) holds. Suppose that y �= 0 and put

e =
1√〈y,y〉y.

Then we have

0 ≤ 〈x−〈x,e〉e,x−〈x,e〉e〉
= 〈x,x〉− 〈x,e〉〈x,e〉− 〈x,e〉〈e,x〉+ |〈x,e〉|2〈e,e〉
= 〈x,x〉−2|〈x,e〉|2 + |〈x,e〉|2
= 〈x,x〉− |〈x,e〉|2

and hence |〈x,e〉|2 ≤ 〈x,x〉. Therefore it follows that |〈x,y〉|2 ≤ 〈x,x〉〈y,y〉.
If the equality holds in the inequality above, then we have x−〈x,e〉e = 0, and so x and

y are linearly dependent. Conversely, if x and y are linearly dependent, that is, there exists
a constant α ∈ C such that x = αy �= 0, then it follows that

|〈x,y〉|2 = |〈αy,y〉|2 = |α|2|〈y,y〉|2 = 〈αy,αy〉〈y,y〉 = 〈x,x〉〈y,y〉.

We can prove it in the case of y = αx in the same way. �

Let H be an inner product space. Put

‖x‖ =
√
〈x,x〉 for all x ∈ H.

Then it follows that ‖ · ‖ is a norm on H:

(i) Positivity: ‖x‖ ≥ 0 and x = 0 if and only if ‖x‖ = 0.

(ii) Homogeneity: ‖αx‖ = |α|‖x‖ for all α ∈ C.

(iii) Triangular inequality: ‖x+ y‖ ≤ ‖x‖+‖y‖.

In fact, positivity and homogeneity are obvious by Definition 1.1. Triangular inequality
follows from

‖x+ y‖2 = ‖x‖2 +2Re〈x,y〉+‖y‖2

≤ ‖x‖2 +2‖x‖‖y‖+‖y‖2 = (‖x‖+‖y‖)2

by Schwarz’s inequality (Theorem 1.1). Therefore, ‖x‖ is a norm on H.

Definition 1.2 If an inner product space H is complete with respect to the norm derived
from the inner product, then H is said to be a Hilbert space.

Some examples of Hilbert spaces will now be given.
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Example 1.1 The space Cn of all n-tuples of complex numbers with the inner product
between x = (α1,α2, · · · ,αn) and y = (β1,β2, · · · ,βn) given by

〈x,y〉 =
n

∑
i=1

αiβi

is a Hilbert space.

Example 1.2 The space l2 of all sequences of complex numbers (α1,α2, · · · ,αn, · · · ) with

∞

∑
i=1

|αi|2 < ∞

and the inner product between x = (α1,α2, · · · ,αn, · · · ) and y = (β1,β2, · · · ,βn, · · · ) given
by

〈x,y〉 =
∞

∑
i=1

αiβi

is a Hilbert space.

A linear operator A on a Hilbert space H is said to be bounded if there exists c > 0 such
that ‖Ax‖ ≤ c‖x‖ for all x ∈ H. Let us define ‖A‖ by

‖A‖ = inf{c > 0 : ‖Ax‖ ≤ c‖x‖ for all x ∈ H.}
Then ‖A‖ is said to be the operator norm of A. By definition,

‖Ax‖ ≤ ‖A‖‖x‖ for all x ∈ H.

In fact, for each x �= 0, ‖Ax‖ ≤ c‖x‖ implies ‖Ax‖
‖x‖ ≤ c. Taking the inf of c, we have

‖Ax‖
‖x‖ ≤ ‖A‖.

We begin by adopting the word “operator” to mean a bounded linear operator.
B(H) will now denote the algebra of all bounded linear operators on a Hilbert space

H �= {0} and IH stands for the identity operator.
The following lemma shows some characterizations of the operator norm.

Lemma 1.1 For any operator A ∈ B(H), the following formulae hold:

‖A‖ = sup{‖Ax‖ : ‖x‖ = 1, x ∈ H}
= sup

{‖Ax‖
‖x‖ : x �= 0, x ∈ H

}
= sup{|〈Ax,y〉| : ‖x‖ = ‖y‖ = 1, x,y ∈ H}

Proof. Put

γ1 = sup{‖Ax‖ : ‖x‖ = 1} and γ2 = sup

{‖Ax‖
‖x‖ : x �= 0

}
.
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For ‖x‖ = 1, we have ‖Ax‖ ≤ ‖A‖‖x‖= ‖A‖ and hence γ1 ≤ ‖A‖. For x �= 0, we have

‖Ax‖
‖x‖ = ‖A x

‖x‖‖ ≤ γ1

and hence γ2 ≤ γ1. For an arbitrary ε > 0, there exists a nonzero vector x ∈ H such that
(‖A‖− ε)‖x‖< ‖Ax‖ and hence

‖A‖− ε <
‖Ax‖
‖x‖ ≤ γ2.

This fact implies ‖A‖ ≤ γ2. Therefore we have ‖A‖ = γ1 = γ2.
Put

γ3 = sup{|〈Ax,y〉| : ‖x‖ = 1,‖y‖ = 1}.
Since |〈Ax,y〉| ≤ ‖Ax‖‖y‖ = ‖Ax‖ ≤ γ1 for ‖x‖ = ‖y‖ = 1, we have γ3 ≤ γ1. Conversely,
for Ax �= 0, we have

‖Ax‖ = |〈Ax,
Ax

‖Ax‖〉| ≤ γ3

and hence γ1 ≤ γ3. Therefore the proof is complete. �

Theorem 1.2 The following properties hold for A,B ∈ B(H):

(i) If A �= O, then ‖A‖ > 0,

(ii) ‖αA‖ = |α|‖A‖ for all α ∈ C,

(iii) ‖A+B‖≤ ‖A‖+‖B‖,
(iv) ‖AB‖ ≤ ‖A‖‖B‖.

Proof.
(i) If A �= O, then there exists a nonzero vector x∈H such that Ax �= 0. Hence 0 < ‖Ax‖≤
‖A‖‖x‖, therefore ‖A‖ > 0.
(ii) If α = 0, then ‖αA‖ = ‖O‖ = 0 = |α|‖A‖. If α �= 0, then

‖αA‖ = sup{‖(αA)x‖ : ‖x‖ = 1}
= sup{|α|‖Ax‖ : ‖x‖ = 1}
= |α|sup{‖Ax‖ : ‖x‖ = 1} = |α|‖A‖.

(iii) If ‖x‖ = 1, then ‖(A+B)x‖= ‖Ax+Bx‖ ≤ ‖Ax‖+‖Bx‖ ≤ ‖A‖+‖B‖, therefore we
have

‖A+B‖= sup{‖(A+B)x‖ : ‖x‖ = 1} ≤ ‖A‖+‖B‖.
(iv) If ‖x‖ = 1, then ‖(AB)x‖ = ‖A(Bx)‖ ≤ ‖A‖‖Bx‖ ≤ ‖A‖‖B‖, therefore we have

‖AB‖ = sup{‖(AB)x‖ : ‖x‖ = 1} ≤ ‖A‖‖B‖.
�
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Theorem 1.3 (RIESZ REPRESENTATION THEOREM) For each bounded linear functional
f from H to C, there exists a unique y ∈ H such that

f (x) = 〈x,y〉 for all x ∈ H.

Moreover, ‖ f‖ = ‖y‖.
Proof. Define M = {x ∈ H : f (x) = 0}. Then M is closed. If M = H, then f = 0 and

we can choose y = 0. If M �= H, then M⊥ �= {0}. For x0 ∈ M⊥\{0}, we have f (x0) �= 0.
Since

f (x− f (x)
f (x0)

x0) = f (x)− f (x)
f (x0)

f (x0) = 0 for all x ∈ H,

it follows that x− f (x)
f (x0)

x0 ∈ M . Hence we have

〈x− f (x)
f (x0)

x0,x0〉 = 0

and 〈x,x0〉 = f (x)
f (x0)

‖x0‖2. If we put y = f (x0)
‖x0‖2 x0, then we have f (x) = 〈x,y〉 for all x ∈ H.

For the uniqueness, suppose that f (x) = 〈x,y〉 = 〈x,z〉 for all x ∈ H. In this case,
〈x,y− z〉 = 0 for all x ∈ H implies y− z = 0.

Finally,
| f (x)| = |〈x,y〉| ≤ ‖x‖‖y‖

implies ‖ f‖ ≤ ‖y‖. Conversely,

‖y‖2 = |〈y,y〉| = | f (y)| ≤ ‖ f‖‖y‖
implies ‖y‖ ≤ ‖ f‖. Therefore, we have ‖ f‖ = ‖y‖. �

For a fixed A ∈ B(H), a functional on H defined by

x �→ 〈Ax,y〉 ∈ C

is bounded linear on H. By the Riesz representation theorem, there exists a unique y∗ ∈ H
such that

〈Ax,y〉 = 〈x,y∗〉 for all x ∈ H.

We now define
A∗ : y �→ y∗,

the mapping A∗ being called the adjoint of A. In summary,

〈Ax,y〉 = 〈x,A∗y〉 for all x,y ∈ H.

Theorem 1.4 The adjoint operation is closed in B(H) and moreover

(i) ‖A∗‖ = ‖A‖,
(ii) ‖A∗A‖ = ‖A‖2.
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Proof.
(i): For y1,y2 ∈ H and α1,α2 ∈ C,

〈Ax,α1y1 + α2y2〉 = α1〈Ax,y1〉+ α2〈Ax,y2〉
= α1〈x,A∗y1〉+ α2〈x,A∗y2〉
= 〈x,α1A

∗y1 + α2A
∗y2〉 for all x ∈ H.

This implies A∗(α1y1 + α2y2) = α1A∗y1 + α2A∗y2 and A∗ is linear. Next,

‖A∗y‖ = sup{|〈x,A∗y〉| : ‖x‖ = 1}
= sup{|〈Ax,y〉| : ‖x‖ = 1}
≤ sup{‖Ax‖‖y‖ : ‖x‖ = 1} = ‖A‖‖y‖,

hence A∗ is bounded and ‖A∗‖ ≤ ‖A‖. Therefore, the adjoint operation is closed in B(H).
Since (A∗)∗ = A, we have

‖A‖ = ‖(A∗)∗‖ ≤ ‖A∗‖
and hence ‖A∗‖ = ‖A‖.
(ii): Since ‖Ax‖2 = 〈Ax,Ax〉 = 〈A∗Ax,x〉 ≤ ‖A∗A‖‖x‖2 for every x ∈ H, we have ‖A‖2 ≤
‖A∗A‖.

On the other hand, (i) gives ‖A∗A‖ ≤ ‖A∗‖‖A‖ = ‖A‖2. Hence the equality

‖A∗A‖ = ‖A‖2

holds for every A ∈ B(H). �

1.2 Self-adjoint operators

We present relevant classes of operators:

Definition 1.3 An operator A ∈ B(H) is said to be

(i) self-adjoint or Hermitian if A = A∗,

(ii) positive if 〈Ax,x〉 ≥ 0 for x in H,

(iii) unitary if A∗A = AA∗ = IH,

(iv) isometry if A∗A = IH ,

(v) projection if A = A∗ = A2.

The following theorem gives characterizations of self-adjoint operators.
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Theorem 1.5 If A ∈ B(H), the following three statements are mutually equivalent.

(i) A is self-adjoint.

(ii) 〈Ax,y〉 = 〈x,Ay〉 for all x,y ∈ H.

(iii) 〈Ax,x〉 ∈ R for all x ∈ H.

Proof.
(i) ⇐⇒ (ii): If A is self-adjoint, then 〈Ax,y〉 = 〈x,A∗y〉 = 〈x,Ay〉. Conversely suppose
that (ii) holds. Since 〈x,A∗y〉 = 〈x,Ay〉 for all x,y ∈ H, we have A∗y = Ay, so that A = A∗.
(ii) ⇐⇒ (iii): If we put y = x in (ii), then

〈Ax,x〉 = 〈x,Ax〉 = 〈Ax,x〉,
so 〈Ax,x〉 is real. Thus (ii) implies (iii). Finally, suppose that (iii) holds. For each x
and y ∈ H, if we put w = x + y, then 〈Aw,w〉 is real, or 〈Aw,w〉 = 〈w,Aw〉. Expanding
〈A(x+ y),x+ y〉= 〈x+ y,A(x+ y)〉, we have

〈Ax,y〉+ 〈Ay,x〉 = 〈x,Ay〉+ 〈y,Ax〉
and Im〈Ax,y〉 = Im〈x,Ay〉. Replacing x by ix, we have Re〈Ax,y〉 = Re〈x,Ay〉. Therefore it
follows that 〈Ax,y〉 = 〈x,Ay〉. Thus (iii) implies (ii). �

The spectrum of an operator A is the set

Sp(A) = {λ ∈ C : A−λ IH is not invertible in B(H)}.
The spectrum Sp(A) is nonempty and compact. An operator A on a Hilbert space H is
bounded below if there exists ε > 0 such that ‖Ax‖ ≥ ε‖x‖ for every x ∈ H. As a useful
criterion for the invertibility of an operator, it is well known that A is invertible if and only
if both A and A∗ are bounded below.

The spectral radius r(A) of an operator A is defined by

r(A) = sup{|α| : α ∈ Sp(A)}.
Then we have the following relation between the operator norm and the spectral radius.

Theorem 1.6 For an operator A, the spectral radius is not greater than the operator
norm:

r(A) ≤ ‖A‖.
Proof. If |α| > ‖A‖, then IH −α−1A is invertible and hence A−αIH is so. Therefore

we have α �∈ Sp(A) and this implies r(A) ≤ ‖A‖. �

Let A be a self-adjoint operator on a Hilbert space H. We define

mA = inf
‖x‖=1

〈Ax,x〉 and MA = sup
‖x‖=1

〈Ax,x〉. (1.2)
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Theorem 1.7 For a self-adjoint operator A, Sp(A) is real and Sp(A) ⊆ [mA,MA].

Proof. If λ = α + iβ with α,β real and β �= 0, then we must show that A−λ IH is
invertible. Put B = 1

β (A−αIH). Since B is self-adjoint and B− iIH = 1
β (A− λ IH), it

follows that A−λ IH is invertible if and only if B− iIH is invertible. For every x ∈ H, we
have

‖(B± iIH)x‖2 = ‖Bx‖2− i〈x,Bx〉+ i〈Bx,x〉+‖x‖2

= ‖Bx‖2 +‖x‖2 ≥ ‖x‖2,

so B− iIH and (B− iIH)∗ are bounded below. Therefore B− iIH is invertible, and hence the
spectrum of a self-adjoint operator is real.

Next, to prove Sp(A) ⊂ [mA,MA], it is enough to show that λ > MA implies λ �∈ Sp(A).
If λ > MA and ε = λ −MA > 0, then

〈(λ IH −A)x,x〉 = λ 〈x,x〉− 〈Ax,x〉 ≥ λ 〈x,x〉−MA〈x,x〉
= ε〈x,x〉 ≥ 0 by the definition of MA.

Hence it follows that ‖(A−λ IH)x‖ ≥ ε‖x‖ for every x ∈H, so, A−λ IH is bounded below.
Since A−λ IH is self-adjoint, it follows that A−λ IH is invertible and λ �∈ Sp(A). �

Definition 1.4 Let A and B be self-adjoint operators on H. We write A ≥ B if A−B is
positive, i.e. 〈Ax,x〉 ≥ 〈Bx,x〉 for every x ∈H. In particular, we write A≥ 0 if A is positive,
A > 0 if A is positive and invertible.

Now, we review the continuous functional calculus. A rudimentary functional calculus
for an operator A can be defined as follows: For a polynomial p(t) = ∑k

j=0 α jt j, define

p(A) = α0IH + α1A+ α2A
2 + · · ·+ αkA

k.

The mapping p → p(A) is a homomorphism from the algebra of polynomials to the alge-
bra of operators. The extension of this mapping to larger algebras of functions is really
significant in operator theory.

Let A be a self-adjoint operator on a Hilbert space H. Then the Gelfand mapping es-
tablishes a ∗-isometrically isomorphism Φ between C∗-algebraC(Sp(A)) of all continuous
functions on Sp(A) and C∗-algebra C∗(A) generated by A and the identity operator IH on
H as follows: For f ,g ∈C(Sp(A)) and α,β ∈ C

(i) Φ(α f + βg) = αΦ( f )+ β Φ(g),

(ii) Φ( f g) = Φ( f )Φ(g) and Φ( f ) = Φ( f )∗ ,

(iii) ‖Φ( f )‖ = ‖ f‖
(

:= sup
t∈Sp(A)

| f (t)|
)

,

(iv) Φ( f0) = IH and Φ( f1) = A, where f0(t) = 1 and f1(t) = t.
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With this notation, we define
f (A) = Φ( f )

for all f ∈ C(Sp(A)) and we call it the continuous functional calculus for a self-adjoint
operator A. It is an extension of p(A) for a polynomial p. The continuous functional
calculus is applicable.

Theorem 1.8 Let A be a self-adjoint operator on H.

(i) f ∈C(Sp(A)) and f ≥ 0 implies f (A) ≥ 0.

(ii) f ,g ∈C(Sp(A)) and f ≥ g implies f (A) ≥ g(A).

(iii) A ≥ 0 and f1/2(t) =
√

t implies f1/2(A) = A1/2.

(iv) fs(t) = |t| implies fs(A) = |A|.

Proof.
(i) Since f ≥ 0, we can choose g =

√
f ∈ C(Sp(A)) and f = g2 = gg. Hence we have

f (A) = g(A)∗g(A) ≥ 0.
(ii) follows from (i).
(iii) Since A ≥ 0, it follows from Theorem 1.7 that f1/2(t) =

√
t ∈C(Sp(A)). Also, f1 =

f 2
1/2 implies A = f1(A) = f1/2(A)2. By (i), we have f1/2(A)≥ 0 and hence f1/2(A) = A1/2.

(iv) f 2
s = f 2

1 implies fs(A)2 = A2 = |A|2. Since fs(A) ≥ 0, we have fs(A) = |A|. �

We remark that the absolute value of an operator A is defined by |A| = (A∗A)1/2.

Theorem 1.9 An operator A is positive if and only if there is an operator B such that
A = B∗B.

Proof. If A is positive, take B =
√

A. If A = B∗B, then 〈Ax,x〉= 〈B∗Bx,x〉= ‖Bx‖2 ≥ 0
for every x ∈ H. This yields that A is positive. �

Theorem 1.10 (GENERALIZED SCHWARZ’S INEQUALITY) If A is positive, then

|〈Ax,y〉|2 ≤ 〈Ax,x〉〈Ay,y〉

for every x,y ∈ H.

Proof. It follows from Theorem 1.1 that

|〈Ax,y〉|2 = |〈A1/2x,A1/2y〉|2 ≤ ‖A1/2x‖2‖A1/2y‖2 = 〈Ax,x〉〈Ay,y〉.

�

Theorem 1.11 Let A be a self-adjoint operator on H. Then

(i) mAIH ≤ A ≤ MAIH,
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(ii) ‖A‖ = max{|mA|, |MA|} = sup{|〈Ax,x〉| : ‖x‖ = 1},
where mA and MA are defined by (1.2).

Proof. The assertion (i) is clear by definition of mA and MA.
Next, put K = max{|mA|, |MA|}. It is easily checked that

K = sup{|〈Ax,x〉| : ‖x‖ = 1} ≤ ‖A‖.
By (i), we have

−K‖x‖2 ≤ m‖x‖2 ≤ 〈Ax,x〉 ≤ M‖x‖2 ≤ K‖x‖2.

For each x,y ∈ H, since

|〈A(x+ y),x+ y〉| ≤ K‖x+ y‖2 and |〈A(x− y),x− y〉| ≤ K‖x− y‖2,

it follows that

|〈A(x+ y),x+ y〉− 〈A(x− y),x− y〉|≤ K(‖x+ y‖2 +‖x− y‖2).

By the parallelogram identity, we have

4|Re〈Ax,y〉| ≤ 2K(‖x‖2 +‖y‖2). (1.3)

Put y = ‖x‖
‖Ax‖Ax for Ax �= 0. Then ‖x‖ = ‖y‖ and Re〈Ax,y〉 = ‖x‖‖Ax‖. Therefore, by (1.3)

we have
‖Ax‖ ≤ K‖x‖. (1.4)

If Ax = 0, then (1.4) holds automatically. Hence we have ‖A‖ ≤ K. Therefore we have
‖A‖ = K. �

Corollary 1.1 If A is a self-adjoint operator, then r(A) = ‖A‖ and ‖An‖= ‖A‖n for n∈N.

Proof. By Theorem 1.11, it follows that r(A) = ‖A‖. By the spectral mapping theorem,
we have p(Sp(A)) = Sp(p(A)) for polynomial p. Therefore, we have ‖A‖n = r(A)n =
r(An) = ‖An‖. �

1.3 Spectral decomposition theorem

We shall introduce the spectral decomposition theorem for self-adjoint, bounded linear
operators on a Hilbert space H. To show it, we need the following notation and lemma.

Definition 1.5 If A is an operator on a Hilbert space H, then the kernel of A, denoted by
ker A, is the closed subspace {x ∈H : Ax = 0}, and the range of A, denoted by ran A, is the
subspace {Ax : x ∈ H}.
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Lemma 1.2 If A is an operator on a Hilbert space H, then

ker A = (ran A∗)⊥ and ker A∗ = (ran A)⊥.

Proof. If x ∈ ker A, then 〈A∗y,x〉 = 〈y,Ax〉 = 0 for all y ∈ H, and hence x is orthogonal
to ran A∗. Conversely, if x is orthogonal to ran A∗, then 〈Ax,y〉= 〈x,A∗y〉= 0 for all y ∈H,
which implies Ax = 0. Therefore, x ∈ ker A and hence ker A = (ran A∗)⊥. We have the
second relation by replacing A by A∗. �

Definition 1.6 A family of projections {e(λ ) : λ ∈ R} is said to be a resolution of the
identity if the following properties hold:

(i) λ < λ ′ =⇒ e(λ ) ≤ e(λ ′),

(ii) e(−∞) = O and e(∞) = IH,

(iii) e(λ +0) = e(λ ) (−∞ < λ < ∞),

where e(λ +0) = s− lim
μ→λ+0

e(μ).

Theorem 1.12 Let A be a self-adjoint operator on a Hilbert space H and m = mA,M =
MA as defined by (1.2). Then there exists a resolution of the identity {e(λ ) : λ ∈ R} such
that

A =
∫ M

m−0
λ de(λ ), e(m−0) = 0 and e(M) = IH .

In particular,

〈Ax,x〉 =
∫ M

m−0
λ d〈e(λ )x,x〉 for every x ∈ H. (1.5)

Proof. We prove only (1.5). Put e(λ ) = proj(ker((A− λ IH)+)) for λ ∈ R, where
A+ = (|A|+A)/2. Then it follows that {e(λ ) : λ ∈ R} is a resolution of the identity and
e(m−0) = 0, e(M) = IH :
(i) Let λ < λ ′. Since A−λ IH ≥ A−λ ′IH , we have (A−λ IH)+ ≥ (A−λ ′IH)+ ≥ 0. If
(A−λ IH)+x = 0, then

0 = 〈(A−λ IH)+x,x〉 ≥ 〈(A−λ ′IH)+x,x〉 ≥ 0

and hence (A−λ ′IH)x = 0. Therefore, we have ker((A−λ IH)+) ⊂ ker((A−λ ′IH)+) and
this implies e(λ ) ≤ e(λ ′).
(ii) If x ∈ ran(e(λ )) = ker((A− λ IH)+), then (A− λ IH)+x = 0 implies (A− λ IH)x =
−(A−λ IH)−x and hence

〈(A−λ IH)x,x〉 = −〈(A−λ IH)−x,x〉 ≤ 0.

Therefore we have 〈Ax,x〉 ≤ λ‖x‖2.
(iii) If x ∈ ran(IH − e(λ )) = (ker((A− λ IH)+)⊥, then (A−λ IH)−x ∈ ker((A− λ IH)+)
because (A−λ IH)+(A−λ IH)− = 0. Hence 〈(A−λ IH)−x,x〉 = 0 and 〈(A−λ IH)x,x〉 =
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〈(A− λ IH)+x,x〉 ≥ 0. Therefore we have 〈Ax,x〉 ≥ λ‖x‖2. If the equality holds, then
〈(A−λ IH)+x,x〉 = 0 and hence (A−λ IH)x = 0. Therefore we have x ∈ ker((A−λ IH)+)
and hence x = 0. Summing up, x ∈ ran(IH − e(λ )), x �= 0 implies 〈Ax,x〉 > λ‖x‖2.
(iv) If λ < m and x ∈ ran(e(λ )), then it follows from (ii) that m‖x‖2 ≤ 〈Ax,x) ≤ λ‖x‖2

and hence x = 0. Therefore we have e(λ ) = O, so that e(m−0) = O.
(v) If λ ≥ M and x ∈ ran(IH − e(λ )), then it follows from (iii) that λ‖x‖2 ≤ 〈Ax,x〉 ≤
M‖x‖2 and hence x = 0. Therefore we have IH − e(λ ) = O, so that e(λ ) = IH . In particu-
lar, we have e(M) = IH .
(vi) If λ < m or λ ≥ M, then it follows from (iv), (v) that e(λ ) = e(λ − 0). Sup-
pose that m ≤ λ < M. Put P = e(λ − 0)− e(λ ). For λ < λ ′ < M, we have ran(P) ⊂
ran(e(λ ′)− e(λ ))′)− e(λ )) = ran(e(λ ′))∩ ran(IH − e(λ )). Hence x ∈ ran(P) and x �= 0
implies λ‖x‖2 < 〈Ax,x〉 ≤ λ ′‖x‖2 by (ii) and (iii). As λ ′ → λ +0, we get λ‖x‖2 < λ‖x‖2,
which is a contradiction. Thereforewe have ran(P)= {0}, so that P = e(λ +0)−e(λ )= O.

For all ε > 0, we choose δ > 0 such that

Δ : α = λ0 < λ1 < · · · < λn = β , ξk ∈ [λk−1,λk] k = 1, · · · ,n,

and
|Δ| = max{λk −λk−1 : k = 1, · · · ,n} < δ .

Since A commutes with e(λ ) for each λ ∈ R, it follows that

A =
n

∑
k=1

A(e(λk)− e(λk−1)) .

For every x ∈ H, we have∣∣∣∣∣〈Ax,x〉−
n

∑
k=1

ξk〈(e(λk)− e(λk−1))x,x〉
∣∣∣∣∣

=

∣∣∣∣∣ n

∑
k=1

〈A(e(λk)− e(λk−1))x,x〉−
n

∑
k=1

ξk〈(e(λk)− e(λk−1))x,x〉
∣∣∣∣∣

≤
n

∑
k=1

|〈(A− ξkI)(e(λk)− e(λk−1))x,(e(λk)− e(λk−1))x〉|

≤
n

∑
k=1

(λk −λk−1)‖(e(λk)− e(λk−1))x‖2

≤ |Δ|‖x‖2 ≤ ε.

Hence we have the desired result 〈Ax,x〉 =
∫ M
m−0 λ d〈e(λ )x,x〉. �

Definition 1.7 Let A be a self-adjoint operator on a Hilbert space H and m = mA,M =
MA as defined by (1.2). For a real valued continuous function f (λ ) on [m,M], a self-adjoint
operator f (A) is defined by

f (A) =
∫ M

m−0
f (λ )de(λ ).
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In particular,

Ar =
∫ M

m−0
λ r de(λ ) for all r > 0 and A

1
2 =

∫ M

m−0
λ

1
2 de(λ ).

In the last part of this chapter, we present the polar decomposition for an operator.
Every complex number can be written as the product of a nonnegative number and a

number of modulus one:

z = |z|eiθ for a complex number z.

We shall attempt a similar argument for operators on an infinite dimensional Hilbert space.
Before considering this result, we need to introduce the notion of a partial isometry.

Definition 1.8 An operator V on a Hilbert space H is a partial isometry if ‖Vx‖ = ‖x‖
for x ∈ (ker V )⊥, which is called the initial space of V .

We consider a useful characterization of partial isometries:

Lemma 1.3 Let V be an operator on a Hilbert space H. The following are equivalent:

(i) V is a partial isometry.

(ii) V ∗ is a partial isometry.

(iii) V ∗V is a projection.

(iv) VV ∗ is a projection.

Moreover, if V is a partial isometry, then VV ∗ is the projection onto the range of V ,
while V ∗V is the projection onto the initial space.

Proof. Suppose that V is a partial isometry. Since

〈(I−V ∗V )x,x〉 = 〈x,x〉− 〈V ∗Vx,x〉 = ‖x‖2−‖Vx‖2 for x ∈ H,

it follows that I−V ∗V is a positive operator. Now if x is orthogonal to ker V , then ‖Vx‖ =
‖x‖ which implies that 〈(I−V ∗V )x,x〉 = 0. Since ‖(I−V ∗V )1/2x‖2 = 〈(I−V ∗V )x,x) = 0,
we have (I −V ∗V )x = 0 or V ∗Vx = x. Therefore, V ∗V is the projection onto the initial
space of V .

Conversely, if V ∗V is a projection and x is orthogonal to ker V ∗V , then V ∗Vx = x.
Therefore,

‖Vx‖2 = 〈V ∗Vx,x〉 = 〈x,x〉 = ‖x‖2,

and hence V preserves the norm on (ker V ∗V )⊥. Moreover, if V ∗Vx = 0, then 0 =
〈V ∗Vx,x〉 = ‖Vx‖2 and consequently ker V ∗V = ker V . Therefore, V is a partial isom-
etry, and hence (i) and (iii) are equivalent.

Similarly, we have the equivalence of (ii) and (iv).
Moreover, if V ∗V is a projection, then (VV ∗)2 = VV ∗VV ∗ = VV ∗, since V (V ∗V ) = V .

Therefore, VV ∗ is a projection, which completes the proof. �

We now obtain the polar decomposition for an operator.
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Theorem 1.13 If A is an operator on a Hilbert space H, then there exists a positive
operator P and a partial isometry V such that A = VP. Moreover, V and P are unique if
ker P = ker V .

Proof. If we set P = |A|, then

‖Px‖2 = 〈Px,Px〉 = 〈P∗Px,x〉 = 〈A∗Ax,x〉 = ‖Ax‖2 for x ∈ H.

Thus, if we define Ṽ on ran P such that ṼPx = Ax, then Ṽ is well defined and is isometric.
Hence, Ṽ can be extended uniquely to an isometry from clos(ranP) to H. If we further
extend Ṽ to H by defining it to be the zero operator on (ranP)⊥, then the extended ex-
tended operator V is a partial isometry satisfying A =VP and ker V = (ranP)⊥ = ker P by
Lemma 1.3.

We next consider uniqueness. Suppose A = WQ, where W is a partial isometry, Q is a
positive operator, and ker W = ker Q. Then P2 = A∗A = QW ∗WQ = Q2, since W ∗W is the
projection onto

(ker W )⊥ = (ker Q)⊥ = clos(ran Q).

Thus, by the uniqueness of the square root, we have P = Q and henceWP =VP. Therefore,
W = V on ran P. But

(ran P)⊥ = ker P = ker W = ker V

and hence W = V on (ran P)⊥. Therefore, V = W and the proof is complete. �

Corollary 1.2 If A is an operator on a Hilbert space H, then there exists a positive op-
erator Q and a partial isometry W such that A = QW. Moreover, W and Q are unique if
ran Q = (ker Q)⊥.

Proof. By Theorem 1.13, we obtain a partial isometry V and a positive operator P
such that A∗ = VP. Taking adjoints we have A = PV ∗, which is the form that we desire
with W =V ∗ and Q = P. Moreover, the uniqueness also follows from Theorem 1.13 since
ran W = (ker Q)⊥ if and only if

ker V = ker W ∗ = (ran W )⊥ = (ker Q)⊥⊥ = ker P.

�

1.4 Notes

For our exposition we have used [276], [45], [143], [18].



Chapter2
Kantorovich Inequality and
Mond-Pečarić Method

This chapter tells the history of the Kantorovich inequality, and describes how the Kan-
torovich inequality has developed in the field of operator inequalities. In such context, so
called “the Mond-Pečarić method” for convex functions established by Mond and Pečarić
has outlined a more complete picture of that inequality in the field of operator inequalities.

2.1 History

The story of the Kantorovich inequality is a very interesting example how a mathematician
creates mathematics. It provides a deep insight into how a principle raised from the Kan-
torovich inequality has developed in the field of operator inequalities on a Hilbert space,
and perhaps, more importantly, it has initiated a new way of thinking and new methods in
operator theory, noncommutative differential geometry, quantum information theory and
noncommutative probability theory. We call this principle the Mond-Pečarić method for
convex functions.

In 1959, Greub and Rheinboldt published the celebrated paper [132]. It is just the
birth of the Kantorovich inequality. They stated that Kantorovich proved the following
inequality.

15
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Theorem K1 If the sequence {γk} (k = 1,2, · · ·) of real numbers has the property

0 < m ≤ γk ≤ M

and {ξk} (k = 1,2, · · ·) denotes another sequence with ∑∞
k=1 ξ 2

k < ∞, then the inequality

∞

∑
k=1

γkξ 2
k

∞

∑
k=1

1
γk

ξ 2
k ≤ (M +m)2

4Mm

[
∞

∑
k=1

ξ 2
k

]2

(2.1)

holds.
It seems to be the first paper which introduced (2.1) to the world of mathematics. More-

over, they say that Kantorovich pointed out that (2.1) is a special case of the following
inequality enunciated by G. Pólya and G. Szegö [253].

Theorem PS If real numbers ak and bk (k = 1, · · · ,n) fulfill the conditions

0 < m1 ≤ ak ≤ M1 and 0 < m2 ≤ bk ≤ M2

respectively, then

1 ≤ ∑n
k=1 a2

k ∑n
k=1 b2

k

[∑n
k=1 akbk]

2 ≤ (M1M2 +m1m2)2

4m1m2M1M2
. (2.2)

To understand (2.1) in Theorem K1 well, if we put ξk = 1/
√

n for k = 1, · · · ,n, then
(2.1) implies

γ1 + · · ·+ γn

n
· γ−1

1 + · · ·+ γ−1
n

n
≤ (M +m)2

4Mm
. (2.3)

Summing up, whenever γ ′ks move in the closed interval [m,M], the left-hand side of (2.3)

does not absolutely exceed the constant (M+m)2
4Mm . At present, the constant (M+m)2

4Mm is called
the Kantorovich constant.

Greub and Rheinboldt moreover went ahead with the ideas of Kantorovich and proved
the following theorem as a generalization of the Kantorovich inequality.

Theorem K2 Given a self-adjoint operator A on a Hilbert space H. If A fulfills the
condition

mIH ≤ A ≤ MIH for some scalars 0 < m ≤ M,

then

〈x,x〉2 ≤ 〈Ax,x〉〈A−1x,x〉 ≤ (M +m)2

4Mm
〈x,x〉2 (2.4)

for all x ∈ H.
Though this formulation is very simple, how to generalize (2.1) might be not plain. In

the case that A is matrix, then (2.4) can be expressed as follows: Put

A =

⎛⎜⎜⎜⎜⎜⎜⎝

γ1 0
γ2

. . .
γn

0
. . .

⎞⎟⎟⎟⎟⎟⎟⎠ and x =

⎛⎜⎜⎜⎜⎜⎜⎝

ξ1

ξ2
...

ξn
...

⎞⎟⎟⎟⎟⎟⎟⎠ .
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Then

A−1 =

⎛⎜⎜⎜⎜⎜⎜⎝

γ−1
1 0

γ−1
2

. . .
γ−1
n

0
. . .

⎞⎟⎟⎟⎟⎟⎟⎠
and we get

〈Ax,x〉 =
∞

∑
k−1

γkξ 2
k and 〈A−1x,x〉 =

∞

∑
k=1

γ−1
k ξ 2

k .

We shall agree that (2.4) is called a generalization of the Kantorovich inequality (2.1).

Though Greub and Rheinboldt carefully cite the Kantorovich inequality, they do not
tell anything about his motivation for considering the inequality (2.1). What is his motive
for considering (2.1)? Thus, we shall attempt to investigate Kantorovich’s original paper
in this occasion. It is written in Russian and very old. We read the original paper in an
English translation [156]. It seems that he was interested in the mathematical formulation
of economics, as he provided a detailed commentary on how to carry out mathematical
analysis in economic activities. Now, when we read [156] slowly and carefully, we find
the inequality (2.1) in question, in the middle of the paper [156].

Lemma K The inequality

∑
k

γku
2
k ∑

k

γ−1
k u2

k ≤
1
4

[√
M
m

+
√

m
M

]2(
∑
k

u2
k

)2

(2.5)

holds, m and M being the bounds of the numbers γk

0 < m ≤ γk ≤ M.

The coefficient in the right-hand side of (2.5) seems to be different from the one in
(2.1). However, since

1
4

[√
M
m

+
√

m
M

]2

=
1
4

[
M +m√

Mm

]2

=
(M +m)2

4Mm
,

the constant of (2.5) coincides with one of (2.1). Following Kantorovich’s original paper,
we know that Kantorovich represents an upper bound as (2.5). Therefore the Kantorovich

constant (M+m)2
4Mm is deformed by Greub and Rheinboldt. Examining the history of math-

ematics a little more, Henrici [141] pointed out that in the case of equal weights, the in-
equality (2.3) is due to Schweitzer [258] in 1914. How Kantorovich proved the inequality
(2.5) in Lemma K is a very interesting matter:
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Proof of Lemma K. We may prove it in the case of finite sums γ1 ≤ γ2 ≤ ·· · ≤ γn and
∑n

k=1 u2
k = 1. We shall seek the maximum of

G = σσ̃ =

(
n

∑
k=1

γku
2
k

)(
n

∑
k=1

1
γk

u2
k

)

under the condition that ∑n
k=1 u2

k = 1. By using the method of Lagrange multipliers, if we
equate to zero the derivatives of the function

F = G−λ

(
n

∑
k=1

u2
k −1

)
,

then we have

1
2

∂F
∂us

= σ
1
γs

us + σ̃γsus−λus = 0, i.e. us(σ + σ̃ γ2
s −λ γs) = 0.

The second factor in the last expression, being a polynomial of the second degree in γs,
can reduce to zero at not more than two values of s; let these be s = k, l. For the remaining
values of s, us must be zero. But then

Gmax =
(
γku

2
k + γlu

2
l

)( 1
γk

u2
k +

1
γl

u2
l

)
=

1
4

[√
γk

γl
+

√
γl

γk

]2

(u2
k +u2

l )
2 − 1

4

[√
γk

γl
+

√
γl

γk

]2

(u2
k −u2

l )
2

≤ 1
4

[√
γk

γl
+

√
γl

γk

]2

≤ 1
4

[√
M
m

+
√

m
M

]2

.

�

Why does Kantorovich need the inequality (2.1)? If we only read the paper due to
Greub and Rheinboldt, we probably cannot fully understand those circumstances. How-
ever, having thoroughly read [156], we are able to explain the necessity of the Kantorovich
inequality.

Kantorovich says that as is generally known, a significant part of the problems of math-
ematical physics – the majority of the linear problems of analysis – may be reduced to a
problem of the extremum of quadratic functionals. This fact may be utilized, on the one
hand for different theoretical investigations relating to these problems. On the other hand,
it serves as a basis for direct methods of solving the problems named. A certain method
of successive approximations for the solution of problems concerning the minimum of
quadratic functionals, and of the linear problems connected with them, is elaborated – the
method of steepest descent.

Let H be a real Hilbert space and A a self-adjoint (bounded linear) operator on H such
that mIH ≤ A ≤ MIH for some scalars 0 < m ≤ M.
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We shall consider the method of steepest descent as it applies to the solution of the
equation

L(x) = Ax− y = 0, (2.6)

where x and y are in H. We introduce the quadratic functional

H(x) = 〈Ax,x〉−2〈y,x〉. (2.7)

For a given y ∈ H, a vector x0 ∈ H is the solution of L(x) = 0 if and only if x0 ∈ H
attains the minimum of H(x).

Indeed, suppose that x∈H satisfies H(x) = minu∈H H(u). Then for each nonzero z∈H
and a real parameter α ∈ R, it follows that

H(x+ αz)−H(x)≥ 0

and this implies

H(x+ αz)−H(x) = 〈Ax+ αAz,x+ αz〉−2〈y,x+ αz〉−H(x)
= α [〈Ax,z〉+ 〈Az,x〉]+ α2〈Az,z〉−2α〈y,z〉
= 2α〈Ax− y,z〉+ α2〈Az,z〉 ≥ 0.

Since A is positive invertible, we have 〈Az,z〉 > 0. Since the inequality above holds for all
α ∈ R, we get (Ax− y,z) = 0 for all nonzero z ∈ H. Therefore we have Ax− y = 0 and
hence x ∈ H is the solution of L(x) = 0.

Conversely, suppose that x ∈ H is the solution of L(x) = Ax− y = 0. Then

H(x+ z)−H(x) = 〈Az,z〉+2〈Ax− y,z〉= 〈Az,z〉 > 0 (2.8)

for all nonzero z∈H. For each y∈H, if we put z = y−x in (2.8), then we have H(y)≥H(x)
and this implies H(x) = miny∈H H(y).

In this way, if the problem of solving an equation (2.6) reduces to the problem of seek-
ing the minimum of the functional (2.7), then this fact is named the variational principle of
the equation.

In seeking the minimum of a functional (2.7) we shall employ the method of steepest
descent. Now, we consider the following three procedures (0), (1) and (2):
(0) For a given initial vector x0 ∈ H, we find a sequence {xn} ⊂ H such that

H(x0) > H(x1) > · · · > H(xn) > · · · → min
u∈H

H(u) = H(x).

(1) By induction, we construct a sequence {xn} ⊂ H such that

xn+1 = xn + αnzn

for αn ∈ R and zn ∈ H.
(2) Moreover, we choose αn ∈ R such that

H(xn + αnzn) = min
t∈R

H(xn + tzn). (2.9)

The following lemma shows that the condition (0) implies the convergence of {xn}.
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Lemma 2.1 Let x be the solution of L(x) = Ax− y = 0. If a sequence {xn} satisfies

H(x0) > H(x1) > · · · > H(xn) > · · · → min
u∈H

H(u) = H(x),

then xn → x as n → ∞.

Proof.

H(xn)−H(x) = 〈Axn,xn〉−2〈y,xn〉− 〈Ax,x〉+2〈y,x〉
= 2〈Ax− y,xn− x〉+ 〈A(xn− x),xn− x〉
= 〈A(xn − x),xn− x〉 ≥ m‖xn− x‖2,

because m〈z,z〉 ≤ 〈Az,z〉 ≤ M〈z,z〉 for every z ∈ H by the assumption. Therefore
lim
n→∞

H(xn) = H(x) implies lim
n→∞

xn = x. �

The following lemma determines the form of αn.

Lemma 2.2 If (2.9) holds, then

αn =
〈zn,zn〉
〈Azn,zn〉

where zn = y−Axn.

Proof.

H(xn + tzn) = 〈Azn,zn〉t2 +2(〈Axn,zn〉− 〈y,zn〉)t +H(xn)
= 〈Azn,zn〉t2 +2〈zn,zn〉t +H(xn)

= 〈Azn,zn〉
(

t− 〈zn,zn〉
〈Azn,zn〉

)2

− 〈zn,zn〉2
〈Azn,zn〉 +H(xn)

Therefore, t = 〈zn,zn〉
〈Azn,zn〉 attains the minimum of H(xn + tzn). �

By the proof of Lemma 2.2, we have

H(xn+1) = H(xn)− 〈zn,zn〉2
〈Azn,zn〉 < H(xn)

and hence we have
H(x0) > H(x1) > · · · > H(xn) > · · · .

Theorem K4 The successive approximations {xn} ⊂ H constructed by the method of
steepest descent converge strongly to the solution of the equation (2.6) with the speed of a
geometrical progression.

Proof. Let x∗ be the solution of equation (2.6) and ΔnH = H(xn)−H(x∗). It is obtained
that the change ΔnH of H in passing from x∗ to xn is

ΔnH = H(xn)−H(x∗) = 〈A(x∗ − xn),x∗ − xn〉.
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Also, since
zn = y−Axn

and
zn+1 = y−Axn+1 = zn−αnAzn,

it follows that
ΔnH = 〈A(xn− x∗),xn − x∗〉 = 〈A−1zn,zn〉

and
Δn+1H = 〈A(xn+1− x∗),xn+1− x∗〉 = ΔnH −2αn〈zn,zn〉+ α2

n 〈Azn,zn〉.
By the definition of αn, we have

ΔnH −Δn+1H
ΔnH

=
2αn〈zn,zn〉−α2

n 〈Azn,zn〉
〈A−1zn,zn〉

=
〈zn,zn〉2

〈Azn,zn〉〈A−1zn,zn〉 (2.10)

We notice the form of a generalization of the Kantorovich inequality due to Greub-
Rheinboldt in the last expression of (2.10).

For the estimation of this ratio let us make use of the spectral decomposition of an
operator A:

A =
∫ M

m
λdeλ and 〈Az1,z1〉 =

∫ M

m
λ d〈eλ z1,z1〉 = lim∑λ 〈Δeλ z1,z1〉; (2.11)

analogously

〈z1,z1〉 = lim∑〈Δeλ z1,z1〉 and 〈A−1z1,z1〉 = lim∑ 1
λ
〈Δeλ z1,z1〉. (2.12)

Replacing in expression (2.10) the inner product by their approximate value as given by
(2.11) and (2.12), we have

ΔnH−Δn+1H
ΔnH

=
[∑〈Δeλ z1,z1〉]2

∑λ 〈Δeλ z1,z1〉∑ 1
λ 〈Δeλ z1,z1〉

≥ 4Mm
(M +m)2 > 0.

The Kantorovich inequality is utilized here to estimate a lower bound!
The approximate equality here is correct with as small an error as one pleases, and we

have therefore an exact inequality

ΔnH−Δn+1H
ΔnH

≥ 4Mm
(M +m)2 ,

whence

Δn+1H ≤
(

1− 4Mm
(M +m)2

)
ΔnH =

(
M−m
M +m

)2

ΔnH.
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Since 0 ≤ M−m
M+m < 1, for a given initial vector x0, we have

lim
n→∞

ΔnH = 0

so that limn→∞ H(xn) = H(x∗). By Lemma 2.1, we have xn → x∗ as n → ∞ and this proves
the assertion. �

The rapidity of convergence of the process is of the order of a geometric progression
with ratio q = (M−m)/(M +m).

It is surprising that the Kantorovich inequality is utilized in the linear problems of
analysis. We cannot understand this fact by reading [132] only. Also, as mentioned above,
we think that Kantorovich proved the following form: If an operator A on H is positive
such that mIH ≤ A ≤ MIH for some scalars 0 < m < M, then

〈x,x〉2
〈Ax,x〉〈A−1x,x〉 ≥

4[√
M
m +

√ m
M

]2 (2.13)

holds for every nonzero vector x in H.
Namely, the Kantorovich inequality is not only the form (2.1) shown in Lemma K, but

also the form (2.13) of the operator version.
Now, the theorem denoted by K2 is a generalization of the Kantorovich inequality in

the operator form, as it was derived by Greub and Rheinboldt. In fact, we easily see that
(2.13) implies Theorem K2. Therefore, one could say that Kantorovich proved Theorem
K2 in a certain sense. At this point, it is suitable to cite a relevant part of [132]:

The subject of this paper is the proof of a generalized form of the inequality for lin-
ear, bounded and self-adjoint operators in Hilbert space. This generalized Kantorovich
inequality proves to be equivalent to a similarly generalized form of the inequality
which we shall call the generalized Pólya-Szegö inequality. Our generalized Kantorovich
inequality is already implicitly contained in the paper of L.V.Kantorovich. However, its
proof there involves the use of the theory of spectral decomposition for the operators in
question. The proof we shall present here will proceed in a considerable simpler way.

Hence, from the underlined sentence we learn that the proof of Theorem K2 was es-
sentially contained in [156]. Furthermore, we see that Greub and Rheinboldt prefer to
avoid the spectral decomposition theorem in the proof, as they believe their own proof to
be considerably simpler.

However, it turned out that their method of proof had a deep significance for mathemat-
ics. The impact of Theorem K2 could be compared to spreading of shock waves around
the world of mathematics. Thus we present the proof of which Greub and Rheinboldt say
that is simpler.

Proof of Theorem K2. The left hand side of the inequality follows directly from
Schwarz’s inequality

〈x,x〉2 = 〈A1/2x,A−1/2x〉2 ≤ 〈A1/2x,A1/2x〉〈A−1/2x,A−1/2x〉
= 〈Ax,x〉〈A−1x,x〉.
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We shall first prove the right hand side of (2.4) for finite dimensional space H. Then we
will show that the proof for the general case can be reduced to that of the finite dimensional
case.

Suppose that H is a finite dimensional space. Then the unit sphere S ⊂ H is compact.
Hence, considered on S, the continuous functional

f (x) =
〈Ax,x〉〈A−1x,x〉

〈x,x〉2

attains its maximum at a certain point, say x0 ∈ S, i.e.

f (x0) = max
x∈S

f (x) = 〈Ax0,x0〉〈A−1x0,x0〉.

With a fixed vector y ∈ H and the real parameter t (|t| < 1) we consider the real valued
function

g(t) = f (x0 + ty).

This function g(t) has a relative maximum at t = 0 and therefore we must necessarily have
g′(0) = 0. Using the self-adjointness of A and A−1 we find

g′(0) = 2〈Ax0,y〉〈A−1x0,x0〉+2〈A−1x0,y〉〈Ax0,x0〉−4 f (x0)〈x0,y〉 = 0

and thus
〈γAx0 + μA−1x0 − x0,y〉 = 0

holds for all y ∈ H, where

γ =
1

2〈Ax0,x0〉 and μ =
1

2〈A−1x0,x0〉 .

Consequently
x0 = γAx0 + μA−1x0.

Applying A and A−1 successively to this equation we find that

Ax0 = γA2x0 + μx0 and A−1x0 = γx0 + μA−2x0

or (
A− 1

2γ
IH

)2

x0 =
1−4γμ

4γ2 x0 and

(
A−1− 1

2μ
IH

)2

x0 =
1−4γμ

4μ2 x0.

Taking into account the assumption 0 < mIH ≤ A ≤ MIH , we have

4γμ
m
M

≤
(
1+(1−4γμ)1/2

)2 ≤ 4γμ
M
m

.

It follows [
4γμ

( m
M

+1
)
−2

]2 ≤ 4(1−4γμ)≤
[
4γμ

(
M
m

+1

)
−2

]2
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or γμ
M2

[
4γμ(M +m)2−4mM

]≤ 0 ≤ γμ
m2

[
4γμ(M +m)2−4mM

]
and therefore

4γμ(M +m)2−4mM = 0.

On the other hand, since

4γμ =
1

〈Ax0,x0〉〈A−1x0,x0〉 ,

we finally have

〈Ax0,x0〉〈A−1x0,x0〉 =
(M +m)2

4Mm
, (2.14)

which was to be proved. (2.14) shows furthermore that (at least in the finite dimensional
case) the upper bound in (2.4) can not be improved.

We now remove the restriction of the finite-dimensionality of H. Let x0 be a fixed
vector of H and let H0 ⊂ H be a finite dimensional subspace of H which contains three
vectors x0, Ax0 and A−1x0. We denote by P the projection of H onto H0. For the operator
B = PA, we have B(H0) ⊂ H0 and

〈Bx,y〉 = 〈PAx,y〉 = 〈PAPx,y〉= 〈x,PAPy〉 = 〈x,By〉

for all x,y ∈ H0. Hence, B is a self-adjoint operator on the space H0. Furthermore, we find
for x ∈ H0

〈Bx,x〉 = 〈PAx,x〉 = 〈Ax,Px〉 = 〈Ax,x〉
and therefore in H0

0 < mIH0 ≤ m′IH0 ≤ B ≤ M′IH0 ≤ MIH0 (2.15)

where

m′ = inf
x∈H0

〈Bx,x〉
〈x,x〉 and M′ = sup

x∈H0

〈Bx,x〉
〈x,x〉 .

Hence, we can apply the first part of the proof to the operator B in the finite dimensional
space H0. By doing that we obtain for all x ∈ H0

〈Bx,x〉〈B−1x,x〉
〈x,x〉2 ≤ (M′ +m′)2

4m′M′ =
1
4

(
M′

m′ +
m′

M′

)
+

1
2
. (2.16)

From (2.15) we conclude that

1 ≤ M′

m′ ≤
M
m

and
M′

m′ +
m′

M′ ≤
M
m

+
m
M

. (2.17)

This last inequality is a result of the fact that for u ≥ 1 the function f (u) = u + 1/u is
monotonically increasing. (2.16) and (2.17) together yield

〈Bx,x〉〈B−1x,x〉
〈x,x〉2 ≤ 1

4

(
M
m

+
m
M

)
+

1
2

=
(M +m)2

4mM
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for all x ∈ H0. Since H0 contains x0,Ax0 and A−1x0, we find

Bx0 = PAx0 = Ax0 and x0 = Px0 = PAA−1x0 = BA−1x0.

The last relation implies B−1x0 = A−1x0 when one considers that the existence of B−1 in
H0 is a direct consequence of (2.15). Substituting we obtain finally

〈Ax0,x0〉〈A−1x0,x0〉 ≤ (M +m)2

4mM
〈x0,x0〉2

Since x0 was arbitrary the theorem is hereby completely proved. �

Moreover, they showed the generalized Pólya-Szegö inequality, which is equivalent to
the Kantorovich inequality:

Theorem 2.1 Let A and B be commuting self-adjoint operators on a Hilbert space H
such that

0 < m1IH ≤ A ≤ M1IH and 0 < m2IH ≤ B ≤ M2IH .

Then

〈Ax,Ax〉〈Bx,Bx〉 ≤ (M1M2 +m1m2)2

4m1m2M1M2
〈Ax,Bx〉2

for all x ∈ H.

Proof. It is rather obvious that the Kantorovich inequality is contained in Theorem 2.1.
In fact, let C be any given self-adjoint operator with

0 < mIH ≤C ≤ MIH .

We set A = C1/2 and B = (C−1)1/2. Since

0 < m1/2IH ≤ A ≤ M1/2IH and 0 < (M−1)1/2IH ≤ B ≤ (m−1)1/2IH ,

it follows immediately from Theorem 2.1 that

〈Cx,x〉〈C−1x,x〉
〈x,x〉2 =

〈Ax,Ax〉〈Bx,Bx〉
〈Ax,Bx〉2 ≤ (M +m)2

4mm

for all x ∈ H and this is the statement of the Kantorovich inequality.
Next, we show that Theorem 2.1 is a consequence of Theorem K2.
From the commutativity of A and B, for the self-adjoint operator C = AB−1 we have

0 <
m1

M2
IH ≤C ≤ M1

m2
IH .

Therefore, it follows from Theorem K2 that

〈Cx,x〉〈C−1x,x〉
〈x,x〉2 ≤ (M1M2 +m1m2)2

4m1m2M1M2
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for all x ∈ H. Put x = (AB)1/2y, then we obtain 〈Cx,x〉 = 〈Ay,Ay〉,〈C−1x,x〉= 〈By,By〉 and
〈x,x〉 = 〈Ay,By〉. Substituting these relations, we get the statement of Theorem 2.1. �

The proof by Greub and Rheinboldt is very long, spanning over approximately five
pages. We can feel the strictness of their proof, but, in contrast, Kantorovich’s proof is
simple and only half a page long. However, it was the formulation by Greub and Rhein-
boldt that brought the first wave of excitement into the world of mathematics. Owing to
Greub and Rheinboldt, the work of Kantorovich has become an object of research in math-
ematics, in operator theory in particular. In their own words, their proof is simple. But, it
is a proof on a grand scale, unexpected and fascinating. Based on a beautiful relation, this
simple formulation may strike a chord in the heart of a mathematician. Many mathemati-
cians concentrated their energies on the generalization of the Kantorovich inequality and
on searching for an even simpler proof.

2.2 Generalizations and improvements

In 1960, one year after the publication of [132], Strang [272] shows the following general-
ization of the Kantorovich inequality for an arbitrary operator without conditions such as
self-adjoiness and positivity.

Theorem 2.2 If T is an arbitrary invertible operator on H, and ‖T‖= M,‖T−1‖−1 = m,
then

|〈Tx,y〉〈x,T−1y〉| ≤ (M +m)2

4Mm
〈x,x〉〈y,y〉 for all x,y ∈ H.

Furthermore, this bound is the best possible.

Proof. We consider the polar decomposition of T . Let A = (T ∗T )1/2. Then U = TA−1

is unitary, and

|〈Tx,y〉〈x,T−1y〉| = |〈UAx,x〉〈x,A−1U−1y〉| = |〈Ax,U∗y〉〈A−1x,U∗y〉| (2.18)

≤ [〈Ax,x〉〈AU∗y,U∗y〉〈A−1x,x〉〈A−1U∗y,U∗y〉]1/2

by generalized Schwarz’s inequality (Theorem 1.10). Since ‖A‖ = ‖(T ∗T )1/2‖
= ‖T‖ = M and ‖A−1‖−1 = ‖T−1‖−1 = m, it follows that mIH ≤ A ≤ MIH . Therefore, by
(2.4) in Theorem K2, we have

RHS in (2.18)≤
(

(M +m)2

4Mm
〈x,x〉2 · (M +m)2

4Mm
〈U∗y,U∗y〉2

)1/2

=
(M +m)2

4Mm
〈x,x〉〈y,y〉,

by using 〈U∗y,U∗y〉 = 〈y,y〉.
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If H is finite dimensional, the bound is attained for x = U∗y = u + v, where u and v
are unit eigenvectors of A corresponding to eigenvalues m and M. In a general case, the
bound need not be attained. But a sequence xn = U∗yn = un + vn, where ‖un‖ = ‖vn‖,
(e(m + 1/n)− e(m− 0))un = un, (e(M + 0)− e(M − 1/n))vn = vn shows on calculation
that the bound is best possible. �

Also, Schopf [257] considered a generalization of the power in the Kantorovich in-
equality. Moving to the year 1996, there is the following extension due to Spain [270]
which is totally different from the Kantorovich inequality. But it is surely an extension. It
does not assume positivity, either. It is slightly long, but we will quote it:

The Kantorovich inequality says that if A is a positive operator on a Hilbert space H
such that mIH ≤ A ≤ MIH for some scalars 0 < m ≤ M, then

4mM〈A−1x,x〉 ≤ (m+M)2 ‖x‖4

〈Ax,x〉

holds for every vector x in H. If we replace x by A
1
2 x, then

4mM〈x,x〉 ≤ (m+M)2 ‖A
1
2 x‖2

〈A2x,x〉 .

This inequality may be viewed as a conversion of the special case

〈Ax,x〉 ≤ ‖Ax‖‖x‖
of the Cauchy-Schwarz inequality, for it is equivalent to the inequality

2
√

mM‖Ax‖‖x‖ ≤ (m+M)〈Ax,x〉.

The methods of operator and spectral theory allow one to generalize the inequality to a
wide class of operators on a Hilbert space.

Let Γ be any nonzero complex number, let R = |Γ|, and let 0 ≤ r ≤ R.

Theorem 2.3 Let A be an operator on H such that
∣∣A−Γ[A]

∣∣2 ≤ r2[A], where [A] is the
range projection of A. Let u ∈ B(K,H) be an operator such that u∗[A]u is a projection.
Then

(R2− r2)u∗A∗Au ≤ R2(u∗A∗u)(u∗Au).

Proof. Since u∗[A]u is a projection, we have∣∣(R2− r2)u∗[A]u−Γu∗Au
∣∣2

= (R2 − r2)2u∗[A]u− (R2− r2){Γu∗Au+ Γu∗A∗u}+R2(u∗A∗u)(u∗Au),

while

u∗
(
r2[A]− ∣∣A−Γ[A]

∣∣2)u

= −(R2− r2)u∗[A]u−u∗A∗Au+ Γu∗Au+ Γu∗A∗u,
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and hence

R2u∗A∗uu∗Au− (R2− r2)u∗A∗Au

=
∣∣(R2− r2)u∗[A]u−Γu∗Au

∣∣2 +u∗
(
r2[A]− ∣∣A−Γ[A]

∣∣2)u.

By the assumption of |A−Γ[A]|2 ≤ r2[A], we have

R2(u∗A∗u)(u∗Au)− (R2− r2)u∗A∗Au ≥ 0.

�

Corollary 2.1 Let A be a positive operator on H such that A is invertible on its range, let
m = minSp(A)\{0} and M = maxSp(A) = ‖A‖. Let u ∈ B(K,H) be an operator such that
u∗[A]u is a projection. Then

4Mmu∗A2u ≤ (M +m)2(u∗Au)2.

Proof. In the situation of Theorem 2.3, we have

R = Γ =
M +m

2
and r =

M−m
2

.

By the assumption of A, it follows that

m[A] ≤ A ≤ M[A]

and hence |A−Γ[A]|2 ≤ r2[A]. Therefore Corollary 2.1 follow from Theorem 2.3. �

Theorem 2.4 Let A be an operator on H such that |A−Γ[A]|2 ≤ r2[A]. Then

(R2− r2)1/2‖Ax‖∥∥[A]x
∥∥≤ R|〈Ax,x〉|, x ∈ H.

If A is positive with Sp(A)\{0} ⊂ [m,M] (0 < m < M), then

2
√

Mm‖Ax‖∥∥[A]x
∥∥≤ (m+M)〈Ax,x〉 for all x ∈ H.

Proof. For x ∈ H define ux : C �→ H : λ �→ λx. Then, identifying C and B(C) canoni-
cally,

u∗xAux = 〈Ax,x〉 for A ∈ B(H).

There is nothing to prove if [A]x = 0, otherwise put u = ux/‖[A]x‖. The first assertion follows
from Corollary 2.1. The second assertion is a direct consequence of the the first. �

Remark 2.1 The second assertion in Theorem 2.4 may be proved in one line:

(m+M)2〈Ax,x〉2 −4Mm‖Ax‖2‖[A]x‖2

=
{
2mM‖[A]x‖2− (m+M)〈Ax,x〉}2

+4Mm
〈
(M−A)(A−m)[A]x, [A]x

〉∥∥[A]x
∥∥2 ≥ 0
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Generalizations of the Kantorovich inequality have made significant progress. The
Mathematical Society was given a treat in the form of topics for the Kantorovich inequality
for a while.

On the other hand, in pursuit of an even simpler proof, in such a flood of papers, Naka-
mura [237] instantly presents the following result in Proceedings of the Japan Academy. It
was in 1960, just one year after the paper due to Greub and Rheinboldt was published. It
is a simple visual proof by using the concavity of f (t) = t−1.

Theorem 2.5 For 0 < m < M, the following inequality holds true:∫ M

m
tdμ(t) ·

∫ M

m

1
t
dμ(t) ≤ (M +m)2

4Mm
(2.19)

for any positive Stieltjes measure μ on [m,M] with ‖μ‖ = 1.

It is easy to see, by the Gelfand representation of the C∗-algebra generated by A and
the identity operator I, that Theorem 2.5 implies the Kantorovich inequality.

If Nakamura had the opportunity to read [156] in an English translation and if he asked
the mathematical community for judgment on the inequality (2.19) and its overwhelmingly
simple proof, then how would that turn out? In one possible outcome, mathematicians
would mostly get the impression that it was very easy to prove that result and therefore the
investigations related to the Kantorovich inequality would be brought to the end. For some
reason, Nakamura’s paper is overlooked in the mathematical world.
To the best of this author’s knowledge, there is no evidence that anyone has ever cited
Nakamura’s paper. Instead, several improvements to proofs of the Kantorovich inequality
have been independently developed in Europe.

The origin of the Kantorovich inequality might be the following case of finite se-
quences.

Theorem 2.6 If the sequence {γi} satisfies the conditions such that m ≤ γi ≤ M for some
scalars 0 < m ≤ M and i = 1,2, · · · ,n, then

(ξ1γ1 + · · ·+ ξnγn)(ξ1γ−1
1 + · · ·+ ξnγ−1

n ) ≤ (M +m)2

4Mm
(2.20)

holds for every ξi ≥ 0 such that ξ1 + · · ·+ ξn = 1.

First of all, we present a direct proof due to Henrici [141]:

Proof of Theorem 2.6. We may assume that m < M. Determine pi and qi from the
equations

γi = piM +qim and γ−1
i = piM

−1 +qim
−1 for i = 1, · · · ,n.

An easy computation shows that pi,qi ≥ 0, i = 1,2, · · · ,n. Furthermore from

1 = (piM +qim)(piM
−1 +qim

−1) = (pi +qi)2 + piqi
(M−m)2

mM
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it follows that pi +qi ≤ 1. Setting p = ∑ξi pi, q = ∑ξiqi, we thus have p+q = ∑ξi(pi +
qi) ≤ ∑ξi = 1. Hence using the arithmetic-geometric mean inequality,

(ξ1γ1 + · · ·+ ξnγn)(ξ1γ−1
1 + · · ·+ ξnγ−1

n )

= (pM +qm)(pM−1 +qm−1) = (p+q)2 + pq
(M−m)2

Mm

≤ (p+q)2
[
1+

(M−m)2

4Mm

]
= (p+q)2 (M +m)2

4Mm
≤ (M +m)2

4Mm
.

Equality is attained in (2.20) if and only if the following two conditions are simulta-
neously fulfilled (we assume here ξi > 0, i = 1,2, · · · ,n without loss of generalization):

(i) p+q= 1. This implies that pi +qi = 1 or piqi = 0 for i = 1, · · · ,n. Thus, for equality
every γi must equal either M or m.

(ii) p+q = 4pq. This implies that p = q or, ∑γi=m ξi = ∑γi=M ξi.

Thus, the weights attached to m and M must be the same.

In comparison with Kantorovich’s proof, Henrici’s one relies on an algebraic calcula-
tion. Inspired by Henrici, Rennie [255] gives the following improved proof with functions
in 1963:

Let f be a measurable function on the probability space such that 0 < m ≤ f (x) ≤ M.
Integrating the inequality

( f (x)−m)( f (x)−M)
f (x)

≤ 0

gives ∫
f (x)dx+mM

∫
1

f (x)
dx ≤ m+M.

Put u = mM
∫ 1

f (x)dx, then we have

u
∫

f (x)dx ≤ (m+M)u−u2 = −
(

u− M +m
2

)2

+
(M +m)2

4
≤ (M +m)2

4
,

which is the Kantorovich inequality:∫
1

f (x)
dx

∫
f (x)dx ≤ (M +m)2

4mM
.

This is exactly a function version of the Kantorovich inequality due to Nakamura.
Its emphatic brevity is surprising. Moreover, inspired by Rennie, Mond [209] gives the
following improved proof with matrices in 1965:

Let A be a positive definite Hermitian matrix with eigenvalues λ1 ≥ λ2 ≥ ·· · ≥ λn > 0.
Since three factors in the LHS of below inequality commute, we have

(A−λnI)(A−λ1I)A−1 ≤ 0.
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Therefore,
〈Ax,x〉+ λ1λn〈A−1x,x〉 ≤ λ1 + λn

for every unit vector x. If we put u = λ1λn〈A−1x,x〉, then

λ1λn〈A−1x,x〉〈Ax,x〉 = u〈Ax,x〉 ≤ (λ1 + λn)u−u2 ≤ (λ1 + λn)2

4
,

which implies the Kantorovich inequality:

〈A−1x,x〉〈Ax,x〉 ≤ (λ1 + λn)2

4λ1λn
.

The proof of Mond may be considered one of the generalized Kantorovich inequal-
ity. But, we present a somewhere different proof by using the arithmetic-geometric mean
inequality in [164, 144, 158]:

Since A is positive and 0 < mIH ≤ A≤MIH , it follows that MIH −A≥ 0 and A−mIH ≥
0. The commutativity of MIH −A and A−mIH implies (MIH − A)(m−1IH − A−1) ≥ 0.
Hence

(M +m)IH ≥ MmA−1 +A

and
〈(M +m)x,x〉 ≥ Mm〈A−1x,x〉+ 〈Ax,x〉

holds for every unit vector x ∈ H. By using the arithmetic-geometric mean inequality

M +m = 〈(M +m)x,x〉 ≥ Mm〈A−1x,x〉+ 〈Ax,x〉 ≥ 2
√

Mm〈A−1x,x〉〈Ax,x〉.

Squaring both sides, we obtain the desired inequality

〈Ax,x〉〈A−1x,x〉 ≤ (M +m)2

4Mm
.

Finally, we present an extremely simple idea due to Diaz and Metcalf [43]:

Lemma 2.3 Let real numbers ak �= 0 and bk (k = 1,2, · · · ,n) satisfy

m ≤ bk

ak
≤ M. (2.21)

Then
n

∑
k=1

b2
k +mM

n

∑
k=1

a2
k ≤ (M +m)

n

∑
k=1

akbk.

The equality holds if and only if in each of the n inequalities (2.21), at least one of the
equality signs holds, i.e. either bk = mak or bk = Mak (where the equation may vary with
k).
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Proof. It follows from the hypothesis (2.21) that

0 ≤
(

bk

ak
−m

)(
M− bk

ak

)
a2

k .

Thus, summing from k = 1 to k = n,

0 ≤
n

∑
k=1

(bk −mak)(Mak −bk) (2.22)

= (M +m)
n

∑
k=1

akbk −
n

∑
k=1

b2
k −mM

n

∑
k=1

a2
k,

which gives the desired result. Clearly, the equality holds in (2.22) if and only if each term
of the summation is zero. �

By using Lemma 2.3, we have

0 ≤
(( n

∑
k=1

b2
k

)1/2−
(
mM

n

∑
k=1

a2
k

)1/2
)2

=
n

∑
k=1

b2
k −2

( n

∑
k=1

b2
k

)1/2(
mM

n

∑
k=1

a2
k

)1/2
+mM

n

∑
k=1

a2
k

≤ (m+M)
n

∑
k=1

akbk −2
√

mM
( n

∑
k=1

b2
k

)1/2( n

∑
k=1

a2
k

)1/2

and hence

4mM
( n

∑
k=1

b2
k

)( n

∑
k=1

a2
k

)
≤ (m+M)2

( n

∑
k=1

akbk

)2

yields immediately the result of Pólya and Szegö (Theorem PS (2.2)).

Similarly, we have an operator version of Lemma 2.3:

Theorem 2.7 Let A and B be self-adjoint operators such that AB = BA and A−1 exists,
and

mIH ≤ BA−1 ≤ MIH for some scalars 0 < m ≤ M.

Then
B2 +mMA2 ≤ (m+M)AB. (2.23)

The equality holds in (2.23) if and only if (MIH −BA−1)(BA−1−mIH) = 0.

By using Theorem 2.7, we have

0 ≤
{
〈Bx,Bx〉1/2−mM〈Ax,Ax〉1/2

}2

= 〈Bx,Bx〉−2
√

mM〈Bx,Bx〉1/2〈Ax,Ax〉1/2 +mM〈Ax,Ax〉
≤ (m+M)〈ABx,x〉−2

√
mM〈Bx,Bx〉1/2〈Ax,Ax〉1/2
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and hence

4mM〈Bx,Bx〉〈Ax,Ax〉 ≤ (m+M)2〈ABx,x〉2

yields immediately results of Greub and Rheinboldt (Theorem 2.1).

Comparing with the proofs of Kantorovich and Greub and Rheinboldt, only algebraic
calculation seems to belong to a different age. However, when we can prove it plainly and
simply, devising a new proof stops being an object of interest for mathematicians.

2.3 The Mond-Pečarić method

In this section, we present the principle of the Mond-Pečarić method for convex functions.
Mond and Pečarić rephrased the Kantorovich inequality as follows: The Kantorovich

inequality says that if A is a positive operator such that 0 < mIH ≤ A ≤ MIH , then

〈Ax,x〉〈A−1x,x〉 ≤ (M +m)2

4Mm
(2.24)

for every unit vector x ∈ H. Divideing both sides by 〈Ax,x〉, we get

〈A−1x,x〉 ≤ (M +m)2

4Mm
〈Ax,x〉−1. (2.25)

Also, since 1 ≤ 〈Ax,x〉〈A−1x,x), we may extend (2.25) into the following inequality:

〈Ax,x〉−1 ≤ 〈A−1x,x〉 ≤ (M +m)2

4Mm
〈Ax,x〉−1. (2.26)

The first inequality of (2.26) is a special case of Jensen’s inequality. In fact, if we put
f (t) = t−1, then (

a1 + · · ·+an

n

)−1

≤ a−1
1 + · · ·+a−1

n

n

for all positive real numbers a1, · · · ,an. Moreover, if f (t) is a convex function on an interval
[m,M], then

f

(
n

∑
i=1

tixi

)
≤

n

∑
i=1

ti f (xi)

for every x1, · · · ,xn ∈ [m,M] and every positive real number t1, · · · ,tn with ∑n
i=1 ti = 1. This

inequality is called the classical Jensen’s inequality. Moreover, an operator version of the
classical Jensen’s inequality holds:



34 2 KANTOROVICH INEQUALITY AND MOND-PEČARIĆ METHOD

Theorem 2.8 Let A be a self-adjoint operator on H such that mIH ≤ A ≤ MIH for some
scalars m ≤ M and f a real valued continuous convex function on [m,M]. Then

f (〈Ax,x〉) ≤ 〈 f (A)x,x〉

holds for every unit vector x ∈ H.

Proof. Refer to [124, Theorem 1.2] for the proof. �

From this point of view, 〈Ax,x〉−1 ≤ 〈A−1x,x〉 is considered as one form of Jensen’s
inequality. Namely, Mond and Pečarić noticed that

the Kantorovich inequality is the converse inequality of the so called Jensen’s one for the
function f (t) = 1/t.

Jensen’s inequality is one of the most important inequalities in the functional analysis.
Many generalizations are developed and many significant results are obtained by using
Jensen’s inequalitiy.

Here, let us consider a generalization of the Kantorovich inequality. Jensen’s inequality
for f (t) = t3 yields

〈Ax,x〉3 ≤ 〈A3x,x〉 for every unit vector x ∈ H. (2.27)

What is a converse of (2.27)? Unfortunately, it seems to be difficult to apply the same
method as in the proof of the Kantorovich inequality. We need a new way of thinking. We
recall Nakamura’s article [237]. It was published too early, as it was ahead of its time and
later on hardly anyone looked back at that paper. Thirty years later ideas similar to his had
appeared in Eastern Europe. By then Nakamura had forgotten all about his principle, but
it had taken root in Eastern Europe and would grow in time.

Thus, we shall recall the proof due to Nakamura: Let μ be a normalized positive
Stieltjes measure on [m,M]. Let y = g(t) a straight line joining the points (m,1/m) and
(M,1/M). Since 1/t ≤ g(t), we have

∫ M

m

1
t
dμ(t) ≤

∫ M

m
g(t)dμ(t) =

M−1 +m−1

2
.

Multiply
∫ M
m tdμ(t) = M+m

2 to both sides,

∫ M

m
tdμ(t)

∫ M

m

1
t
dμ(t) ≤ M +m

2
· M

−1 +m−1

2
=

(M +m)2

4Mm
.

Applying it to a positive operator A with ‖A‖ = M and ‖A−1‖−1 = m, we have just the
Kantorovich inequality

〈Ax,x〉〈A−1x,x〉 ≤ (M +m)2

4Mm
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for every unit vector x ∈H. We remark that the Kantorovich constant equals the arithmetic
mean of m and M divided by the harmonic one:

(M +m)2

4Mm
=

M+m
2(

M−1+m−1

2

)−1 .

Namely, we know that Nakamura’s proof is actually the origin of the so called the
Mond-Pečarić method for convex functions by which the converses of Jensen’s inequality
are induced. Moreover, Ky Fan [48] proceeded with a generalization of the Kantorovich
inequality for f (t) = t p with p ∈ Z. Here, we shall present the principle of the Mond-
Pečarić method for convex functions:

Theorem 2.9 Let A be a self-adjoint operator on a Hilbert space H such that mIH ≤ A ≤
MIH for some scalars m < M. If f is a convex function on [m,M] such that f > 0 on [m,M],
then

〈 f (A)x,x〉 ≤ K(m,M, f ) f (〈Ax,x〉)
for every unit vector x ∈ H, where

K(m,M, f ) = max

{
1

f (t)

(
f (M)− f (m)

M−m
(t −m)+ f (m)

)
: m ≤ t ≤ M

}
.

Proof. Since f (t) is convex on [m,M], we have

f (t) ≤ f (M)− f (m)
M−m

(t −m)+ f (m) for all t ∈ [m,M].

Using the operator calculus, it follows that

f (A) ≤ f (M)− f (m)
M−m

(A−m)+ f (m)IH

and hence

〈 f (A)x,x〉 ≤ f (M)− f (m)
M−m

(〈Ax,x〉−m)+ f (m)

for every unit vector x ∈ H. Divide both sides by f (〈Ax,x〉) (> 0), and we get

〈 f (A)x,x〉
f (〈Ax,x〉) ≤

f (M)− f (m)
M−m (〈Ax,x〉−m)+ f (m)

f (〈Ax,x〉)
≤ max

{
1

f (t)

(
f (M)− f (m)

M−m
(t−m)+ f (m)

)
: m ≤ t ≤ M

}
,

since m ≤ 〈Ax,x〉 ≤ M. Therefore, we have the desired inequality. �

Theorem 2.10 Let A be a self-adjoint operator on a Hilbert space H such that mIH ≤
A ≤ MIH for some scalars m < M. If f is a concave function on [m,M] such that f > 0 on
[m,M], then

K̃(m,M, f ) f (〈Ax,x〉) ≤ 〈 f (A)x,x〉 ≤ f (〈Ax,x〉)


