
Chapter1

Generalization of the classical
integral forumalae and related
inequalities

In this chapter we introduce general integral identities using the harmonic sequences of
polynomials and w−harmonic sequences of functions. Those identities are the main tool
for deriving generalizations of some famous quadrature formulas. We deal with quadrature
formulas which contain values of the function in nodes, as well as values of higher ordered
derivatives in inner nodes. Thereby, the level of exactness of those quadrature formulas is
saved. Error estimations with sharp and the best possible constants are developed as well.

In Section 1.1. general integral identities with harmonic polynomials and w−harmonic
functions are established. Those identities are actually the general quadrature formulas
with m + 1 nodes. For both identites the error estimations for functions whose higher
ordered derivatives belong to Lp spaces are given.

In Section 1.2. general one-point quadrature formula is established. Special cases of
the well known weights are considered and generalizations of the Gaussian quadrature
formulas with one node are obtained.

In Section 1.3. general two-point integral quadrature formula using the concept of har-
monic polynomials is established. Improved version of Guessab and Schmeisser’s result is
given with new integral inequalities involving functions whose derivatives belong to var-
ious classes of functions (Lp spaces, convex, concave, bounded functions). Furthermore,
several special cases of polynomials are considered, and the generalization of well-known
two-point quadrature formulae, such as trapezoid, perturbed trapezoid, two-point Newton-
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2 1 GENERALIZATION OF THE CLASSICAL INTEGRAL FORUMALAE AND...

Cotes formula, two-point Maclaurin formula, midpoint, are obtained. Weighted version of
two-point integral quadrature formula is obtained using w−harmonic sequences of func-
tions. For special choices of weights w and nodes x and a+b− x the generalization of the
well-known two-point quadrature formulas of Gauss type are given.

In Section 1.4. general three-point quadrature formula with nodes x, a+b
2 and a+b−x is

introduced. From non-weighted version Simpson, dual Simpson and Maclaurin formulas
are obtained, while for special weights Gaussian quadrature formulas are given.

The closed four-point quadrature formula is introduced in Section 1.5. Generalization
of Lobatto formula is given as special case.

Definition 1.1 We say that {Pk}k ∈ N0 is harmonic sequence of the polynomials if
P′

k(t) = Pk−1(t),∀k ∈ N and P0(t) ≡ 1.

1.1 General integral identities involving w−harmonic
sequences of functions

Non-weighted integral identity is used for the approximation of an integral of the following
form:

∫ b
a f (t)dt. The next theorem is obtained in [100].

Theorem 1.1 Let σ := {a = x0 < x1 < x2 < .. . < xm = b} be subdivision of the interval
[a,b]. Further, let for each j = 1, . . . ,m, {Pjk}k∈N0

be the harmonic sequences of the
polynomials on [x j−1,x j], i.e. P′

jk(t) = Pj,k−1(t) i Pj0(t) ≡ 1, for j = 1, . . . ,m and k ∈ N,
and let

Sn(t,σ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
P1n(t), t ∈ [a,x1]
P2n(t), t ∈ (x1,x2]
...
Pmn(t), t ∈ (xm−1,b],

(1.1)

for some n ∈ N. For an arbitrary (n−1)−times differentiable function f : [a,b] → R such
that f (n−1) is bounded, the following identity states

(−1)n
∫ b

a
Sn(t,σ)d f (n−1)(t) =

∫ b

a
f (t)dt +

n

∑
k=1

(−1)k
[
Pmk(b) f (k−1)(b)

+
m−1

∑
j=1

[
Pjk(x j)−Pj+1,k(x j)

]
f (k−1)(x j)−P1k(a) f (k−1)(a)

]
, (1.2)

whenever the integrals exist.

Identity (1.2) is used for the approximation of an integral
∫ b
a f (t)dt both with the values of

the function f and its higher order derivatives in nodes x0,x1,x2, . . . ,xm. With appropriate
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choice of polynomials {Pjk} and nodes x j we shall get the generalization of the well-known
quadrature formulas. In those generalized formulas the integral is approximated not only
with the values of the function in certain nodes, but also with values of its derivatives up to
(n−1)th order in inner nodes.
Let us develop an error estimation for the identity (1.2).

Theorem 1.2 Assume (p,q) is a pair of conjugate exponents, that is 1 ≤ p,q,≤ ∞, 1
p +

1
q = 1. If f : [a,b] → R is an arbitrary function such that f (n) is piecewise continuous, for
some n ∈ N, then we have∣∣∣∣∣

∫ b

a
f (t)dt +

n

∑
k=1

(−1)k
[
Pmk(b) f (k−1)(b)

+
m−1

∑
j=1

[
Pjk(x j)−Pj+1,k(x j)

]
f (k−1)(x j)−P1k(a) f (k−1)(a)

]∣∣∣∣∣
≤C(n,q)‖ f (n)‖p, (1.3)

where

C(n,q) = ‖Sn(·,σ)‖q =

⎧⎪⎪⎨⎪⎪⎩
[
∑m

j=1
∫ x j
x j−1

∣∣Pjn(t)
∣∣q dt

] 1
q
, 1 ≤ q < ∞

max1≤ j≤m{supt∈[x j−1,x j ]
∣∣Pjn(t)

∣∣}, q = ∞.

Inequalities are sharp for 1 < p ≤ ∞ and the best possible for p = 1. Equality in (1.3) is
attained for the functions f of the form:

f (t) = M f∗(t)+ rn−1(t), (1.4)

where M ∈R, rn−1 is an arbitrary polynomial of degree n−1, and f∗ : [a,b]→R is function
with the following representation:

f∗(t) :=
∫ t

a

(t− s)n−1

(n−1)!
|Sn(s,σ)| 1

p−1 sgnSn(s,σ)ds, 1 < p < ∞ (1.5)

and

f∗(t) :=
∫ t

a

(t− s)n−1

(n−1)!
sgnSn(s,σ)ds, p = ∞. (1.6)

Proof. Applying Hölder inequality to the integral

(−1)n
∫ b

a
Sn(t,σ)d f (n−1)(t) = (−1)n

∫ b

a
Sn(t,σ) f (n)(t)dt

an inequality (1.3) is obtained. To prove the inequalities are sharp for 1 < p ≤ ∞, we have
to find function f : [a,b]→ R such that∣∣∣∣∫ b

a
Sn(t,σ) f (n)(t)dt

∣∣∣∣= C(n,q) · ‖ f (n)‖p. (1.7)
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For function f∗ defined by (1.5) and (1.6) we have

f (n)
∗ (t) =

⎧⎨⎩
sgnSn(t,σ), p = ∞,

|Sn(t,σ)| 1
p−1 sgnSn(t,σ), 1 < p < ∞,

Function f : [a,b] → R defined with (1.4) is n−times differentiable also. Further, f (n) is

piecewise continuous and f (n)(t) = M f (n)
∗ (t) holds.

For p = ∞ we have ‖ f (n)‖p = |M|, so∣∣∣∣∫ b

a
Sn(t,σ) f (n)(t)dt

∣∣∣∣= ∣∣∣∣M ∫ b

a
Sn(t,σ) f (n)

∗ (t)dt

∣∣∣∣
=
∣∣∣∣M ∫ b

a
Sn(t,σ)sgnSn(t,σ)dt

∣∣∣∣
= |M|

∫ b

a
|Sn(t,σ)|dt = C(n,1)‖ f (n)‖∞

holds, while for 1 < p < ∞ we have

‖ f (n)‖p = |M|
[∫ b

a
|Sn(t,σ)| p

p−1 dt

] 1
p

= |M|
[∫ b

a
|Sn(t,σ)|q dt

] 1
p

,

which implies ∣∣∣∣∫ b

a
Sn(t,σ) f (n)(t)dt

∣∣∣∣= ∣∣∣∣M ∫ b

a
Sn(t,σ) f (n)

∗ (t)dt

∣∣∣∣
=
∣∣∣∣M∫ b

a
Sn(t,σ) |Sn(t,σ)| 1

p−1 sgnSn(t,σ)dt

∣∣∣∣
= |M|

∫ b

a
|Sn(t,σ)| p

p−1 dt = |M|
∫ b

a
|Sn(t,σ)|q dt = C(n,q)‖ f (n)‖p,

so the proof of the (1.7) is finished.
Finally, we have to prove that inequality (1.3) is the best possible for p = 1. Obviously,
because of the continuity of the Pjk(·) on [x j−1,x j], there exists j ∈ {1, . . . ,m} and t0 ∈
[x j−1,x j] such that supt∈[a,b] |Sn(t,σ)| =

∣∣Pjn(t0)
∣∣ . First, let us assume that Pjn(t0) > 0.

There are two possibilities:

(i) x j−1 < t0 ≤ x j

(ii) t0 = x j−1

For the case (i) let us define function fε : [a,b]→ R for ε > 0:

f (n−1)
ε (t) =

⎧⎨⎩
1, t ≤ t0− ε,
t0−t

ε , t ∈ [t0 − ε, t0],
0, t ≥ t0.
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When ε is ”enough small”, we have∣∣∣∣∫ b

a
Sn(t,σ) f (n)

ε (t)dt

∣∣∣∣= 1
ε

∣∣∣∣∫ t0

t0−ε
Sn(t,σ)dt

∣∣∣∣= 1
ε

∫ t0

t0−ε
Pjn(t)dt.

Further,
1
ε

∫ t0

t0−ε
Pjn(t)dt ≤ 1

ε
Pjn(t0)

∫ t0

t0−ε
dt = Pjn(t0).

Since limε→0
1
ε
∫ t0
t0−ε Pjn(t)dt = Pjn(t0), the assertion follows.

For the case (ii) let us define function fε : [a,b] → R for ε > 0:

f (n−1)
ε (t) =

⎧⎨⎩
0, t ≤ t0,
t−t0

ε , t ∈ [t0,t0 + ε],
1, t ≥ t0 + ε.

When ε is ”enough small”, we have∣∣∣∣∫ b

a
Sn(t,σ) f (n)

ε (t)dt

∣∣∣∣= 1
ε

∣∣∣∣∫ t0+ε

t0
Sn(t,σ)dt

∣∣∣∣= 1
ε

∫ t0+ε

t0
Pjn(t)dt.

Further,
1
ε

∫ t0+ε

t0
Pjn(t)dt ≤ 1

ε
Pjn(t0)

∫ t0+ε

t0
dt = Pjn(t0).

Since limε→0
1
ε
∫ t0+ε
t0

Pjn(t)dt = Pjn(t0), the assertion follows.
For the case Pjn(t0) < 0, the proof is simmilar. �

Remark 1.1 Inequality (1.3) is obtained in [100], for the case 1 < p ≤ ∞.

In [73] is derived the identity (1.2) with monic polynomials:

Theorem 1.3 Let σ := {a = x0 < x1 < x2 < .. . < xm = b} be subdivision of the inter-
val [a,b]. Further, for j = 1, . . . ,m, let Mjn be monic polynomials, for some n ∈ N, with
degMjn = n. Define

Vn(t,σ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
M1n(t), t ∈ [a,x1],
M2n(t), t ∈ (x1,x2],
...
Mmn(t), t ∈ (xm−1,b].

(1.8)

If f : [a,b] → R is some (n−1)−times differentiable function such that f (n−1) is bounded,
then we have∫ b

a
f (t)dt +

1
n!

n−1

∑
k=0

(−1)k+1 ·
[
M(n−k−1)

mn (b) f (k)(b)+
m−1

∑
j=1

[
M(n−k−1)

jn (x j)

− M(n−k−1)
j+1,n (x j)

]
f (k)(x j)−M(n−k−1)

1n (a) f (k)(a)
]

(1.9)

=
(−1)n

n!

∫ b

a
Vn(t,σ)d f (n−1)(t).
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Proof. The proof follows from the successively integration by parts of the integral

(−1)n

n!

∫ b

a
Vn(t,σ)d f (n−1)(t).

�

Remark 1.2 Let {Pjk}k=0,1,...,n be harmonic sequences of polynomials such that Pj0(t) =
1. Then we have Pn−k−1

jn (t) = Pj,k+1(t), for 0 ≤ k ≤ n−1. Put Mjn = n!Pjn in (1.9). Now
we have Vn(t,σ) = n!Sn(t,σ), so the identity (1.9) is equivalent to the identity (1.2).

Theorem 1.4 Assume (p,q) is a pair of conjugate exponents, that is 1 ≤ p,q,≤ ∞, 1
p +

1
q = 1. If f : [a,b] → R is an arbitrary function such that f (n) is piecewise continuous, for
some n ∈ N, then we have∣∣∣∣∣

∫ b

a
f (t)dt +

1
n!

n−1

∑
k=0

(−1)k+1 ·
[
M(n−k−1)

mn (b) f (k)(b)

+
m−1

∑
j=1

[
M(n−k−1)

jn (x j)−M(n−k−1)
j+1,n (x j)

]
f (k)(x j)−M(n−k−1)

1n (a) f (k)(a)
]∣∣∣∣∣

≤ 1
n!

K(n,q)‖ f (n)‖p, (1.10)

where

K(n,q) = ‖Vn(·,σ)‖q =

⎧⎪⎪⎨⎪⎪⎩
[
∑m

j=1
∫ x j
x j−1

∣∣Mjn(t)
∣∣q dt

] 1
q
, 1 ≤ q < ∞

max1≤ j≤m{supt∈[x j−1,x j ]
∣∣Mjn(t)

∣∣}, q = ∞.

Inequalities are sharp for 1 < p ≤ ∞ and the best possible for p = 1. Equality in (1.10) is
attained for the functions f of the form:

f (t) = M f∗(t)+ rn−1(t), (1.11)

where M ∈R, rn−1 is an arbitrary polynomial of degree n−1, and f∗ : [a,b]→R is function
with the following representation:

f∗(t) :=
∫ t

a

(t− s)n−1

(n−1)!
|Vn(s,σ)| 1

p−1 sgnVn(s,σ)ds, 1 < p < ∞ (1.12)

i

f∗(t) :=
∫ t

a

(t − s)n−1

(n−1)!
sgnVn(s,σ)ds, p = ∞. (1.13)

Proof. The proof is simmilar to the proof of the Theorem 1.2 �

Weighted version of the identity (1.2) and related inequalities are obtained in [72]. In
this case the w−harmonic sequences of the functions are used.
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Lemma 1.1 Let w : [a,b] → R be integrable function on [a,b] and let {wk}k=1,...,n be
w−harmonic sequences of functions, i.e. wk : [a,b]→ R are such that w′

k(t) = wk−1(t), for
t ∈ [a,b] and k = 2,3, . . . ,n, and w′

1(t) = w(t). If g : [a,b] → R is n−times differentiable
function such that g(n) is piecewise continuous on [a,b], then we have∫ b

a
w(t)g(t)dt = An(w,g;a,b)+Rn(w,g;a,b), (1.14)

where

An(w,g;a,b) =
n

∑
k=1

(−1)k−1
[
wk(b)g(k−1)(b)−wk(a)g(k−1)(a)

]
and

Rn(w,g;a,b) = (−1)n
∫ b

a
wn(t)g(n)(t).

Proof. We prove (1.14) by mathematical induction.
For n = 1 integration by parts gives∫ b

a
w(t)g(t)dt = w1(b)g(b)−w1(a)g(a)−

∫ b

a
w1(t)g′(t)dt. (1.15)

Let us assume that for l = 1, . . . ,n−1 we have∫ b

a
w(t)g(t)dt =

l

∑
k=1

(−1)k−1
[
wk(b)g(k−1)(b)−wk(a)g(k−1)(a)

]
+ (−1)l

∫ b

a
wl(t)g(l)(t)dt. (1.16)

Further, integration by parts yields∫ b

a
wl(t)g(l)(t)dt = wl+1(b)g(l)(b)−wl+1(a)g(l)(a)−

∫ b

a
wl+1(t)g(l+1)(t)dt. (1.17)

Finnaly, we impose the identity (1.17) to the relation (1.16) and obtain∫ b

a
w(t)g(t)dt =

l

∑
k=1

(−1)k−1
[
wk(b)g(k−1)(b)−wk(a)g(k−1)(a)

]
+ (−1)l

[
wl+1(b)g(l)(b)−wl+1(a)g(l)(a)

−
∫ b

a
wl+1(t)g(l+1)(t)dt

]
=

l+1

∑
k=1

(−1)k−1
[
wk(b)g(k−1)(b)−wk(a)g(k−1)(a)

]
+ (−1)l+1

∫ b

a
wl+1(t)g(l+1)(t)dt,

so the assertion is valid for l +1. �
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Remark 1.3 Function w : [a,b] → R is usually called weight.

Consider subdivision σ = {a = x0 < x1 < .. . < xm = b} of the segment [a,b],for some
m ∈ N. Let w : [a,b] → R be an arbitrary integrable function. On each interval [xk−1,xk],
k = 1, . . . ,m we consider different w−harmonic sequences of functions {wk j} j=1,...,n, i.e.
we have

w′
k1(t) = w(t) for t ∈ [xk−1,xk]

(wk j)′(t) = wk, j−1(t) for t ∈ [xk−1,xk], for all j = 2,3, . . . ,n. (1.18)

Further, let us define

Wn,w(t,σ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

w1n(t) for t ∈ [a,x1],

w2n(t) for t ∈ (x1,x2],
...
wmn(t) for t ∈ (xm−1,b].

(1.19)

Theorem 1.5 If g : [a,b] → R is such that g(n) is a piecewise continuous on [a,b], then
the following identity holds∫ b

a
w(t)g(t)dt =

n

∑
j=1

(−1) j−1
[
wmj(b)g( j−1)(b) (1.20)

+
m−1

∑
k=1

[
wk j(xk)−wk+1, j(xk)

]
g( j−1)(xk)−w1 j(a)g( j−1)(a)

]
+ (−1)n

∫ b

a
Wn,w(t,σ)g(n)(t)dt.

Proof. Using relation (1.14) on each interval [xk−1,xk] for appropriate w−harmonic se-
quence, we get the following∫ xk

xk−1

w(t)g(t)dt = An(w,g;xk−1,xk)+Rn(w,g;xk−1,xk). (1.21)

By summing relation (1.21) from k = 1 to m we obtain∫ b

a
w(t)g(t)dt =

n

∑
j=1

(−1) j−1
[
wmj(b)g( j−1)(b) (1.22)

+
m−1

∑
k=1

[
wk j(xk)−wk+1, j(xk)

]
g( j−1)(xk)−w1 j(a)g( j−1)(a)

]
+

m

∑
k=1

Rn(w,g;xk−1,xk)

=
n

∑
j=1

(−1) j−1
[
wmj(b)g( j−1)(b)
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+
m−1

∑
k=1

[
wk j(xk)−wk+1, j(xk)

]
g( j−1)(xk)−w1 j(a)g( j−1)(a)

]
+ (−1)n

∫ b

a
Wn,w(t,σ)g(n)(t)dt.

�

Now we shall give the general Lp theorem.

Theorem 1.6 Assume thet (p,q) is a pair of conjugate exponents, that is 1 ≤ p,q ≤ ∞,
1
p + 1

q = 1. If g : [a,b]→ R is some function such that g(n) is piecewise continuous on [a,b]
and g(n) ∈ Lp[a,b], then the following inequality holds∣∣∣∣∣

∫ b

a
w(t)g(t)dt −

n

∑
k=1

(−1)k−1
[
wmk(b)g(k−1)(b) (1.23)

−
m−1

∑
j=1

[
wjk(x j)−wj+1,k(x j)

]
g(k−1)(x j)−w1k(a)g(k−1)(a)

]∣∣∣∣∣
≤C(n,q,w) · ‖g(n)‖p,

where

C(n,q,w) = ‖Wn,w(·,σ)‖q =

⎧⎪⎪⎨⎪⎪⎩
[
∑m

j=1
∫ x j
x j−1

∣∣wjn(t)
∣∣q dt

] 1
q
,1 ≤ q < ∞,

max1≤ j≤m{supt∈[x j−1,x j ]
∣∣wjn(t)

∣∣},q = ∞.

The inequality is the best possible for p = 1 and sharp for 1 < p ≤ ∞. Equality is attained
for every function g such that

g(t) = M ·g∗(t)+ pn−1(t),

where M ∈ R, pn−1 is an arbitrary polynomial of degree at most n−1 and g∗(t) is function
on [a,b] defined by

g∗(t) :=
∫ t

a

(t− s)n−1

(n−1)!
|Wn,w(s,σ)| 1

p−1 sgnWn,w(s,σ)ds, 1 < p < ∞ (1.24)

i

g∗(t) :=
∫ t

a

(t− s)n−1

(n−1)!
sgnWn,w(s,σ)ds, p = ∞. (1.25)
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1.2 Application to the one-point quadrature
formulae

Now we develop the weighted one-point formula for numerical integration. Let g : [a,b]→
R be some function and x ∈ [a,b]. Let w : [a,b] → R be some integrable function. The
approximation of the integral

∫ b
a w(t)g(t)dt will involve the values of the higher order

derivatives of g in the node x. We consider subdivision σ = {x0 < x1 < x2} of the interval
[a,b], where x0 = a, x1 = x and x2 = b. Further, let {w1

k j} j=1,...,n be w−harmonic sequences
on each subinterval [xk−1,xk], k = 1,2, defined by the following relations:

w1
1 j(t) :=

1
( j−1)!

∫ t

a
(t − s) j−1w(s)ds, t ∈ [a,x]

w1
2 j(t) :=

1
( j−1)!

∫ t

b
(t − s) j−1w(s)ds, t ∈ (x,b],

for j = 1, . . . ,n. Now we can state the following theorem

Theorem 1.7 If g : [a,b] → R is such that g(n) is a piecewise continuous function, then
we have ∫ b

a
w(t)g(t)dt = A1

1(x)g(x)+T 1
n,w(x)+ (−1)n

∫ b

a
W 1

n,w(t,x)g(n)(t)dt,

(1.26)

where for j = 1, . . . ,n

T 1
n,w(x) =

n

∑
j=2

A1
k(x)g

(k−1)(x), (1.27)

further, for j = 1, . . . ,n

A1
j(x) =

(−1) j−1

( j−1)!

∫ b

a
(x− s) j−1w(s)ds (1.28)

and

W 1
n,w(t,x) =

{
w1

1n(t) = 1
(n−1)!

∫ t
a(t − s)n−1w(s)ds for t ∈ [a,x],

w1
2n(t) = 1

(n−1)!
∫ t
b(t − s)n−1w(s)ds for t ∈ (x,b].

(1.29)

Proof. We apply identity (1.20) for m = 2 and x1 = x to get∫ b

a
w(t)g(t)dt =

n

∑
j=1

(−1) j−1[w1
1 j(x)−w1

2 j(x)
]
g( j−1)(x)

+ (−1)n
∫ b

a
W 1

n,w(t,x)g(n)(t)dt,
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since w1
1 j(a) = 0 and w1

2 j(b) = 0, for j = 1, . . . ,n. Further, we compute

w1
1 j(x)−w1

2 j(x) =
1

( j−1)!

∫ b

a
(x− s) j−1w(s)ds = (−1) j−1A1

j(x),

so the assertion of the Theorem follows. �

Remark 1.4 The identity in Theorem 1.7 was obtained in [85], so we may call it an
integral formula of Matić, Pečarić and Ujević.

Remark 1.5 If we want formula (1.26) to be exact for the polynomials of degree at most
1, such that approximation formula doesn’t include the first derivative, the extra condition
A2(x) = 0 is required. From this condition we get∫ b

a
(x− s)w(s)ds = 0.

The solution x =
∫ b
a sw(s)ds∫ b
a w(s)ds

of this equation yields the node of the one-point Gaussian

quadrature formula.

Theorem 1.8 Let w : [a,b] → [0,∞) be an integrable function and x ∈ [a,b]. Further,
let {w1

k j} j=1,...,2n+1 be w−harmonic sequences of functions for k = 1,2 and some n ∈ N,
defined by the following relations:

w1
1 j(t) :=

1
( j−1)!

∫ t

a
(t− s) j−1w(s)ds, t ∈ [a,x]

w1
2 j(t) :=

1
( j−1)!

∫ t

b
(t− s) j−1w(s)ds, t ∈ (x,b],

for j = 1, . . . ,2n+ 1. If g : [a,b] → R is such that g(2n) is continuous function, then there
exists η ∈ [a,b] such that∫ b

a
w(t)g(t)dt = A1

1(x)g(x)+T 1
n,w(x)+A1

2n+1(x) ·g(2n)(η). (1.30)

Proof. It is easy to check that W2n,w(t,x) ≥ 0, for t ∈ [a,b], so we can apply integral mean
value theorem to the

∫ b
a W2n,w(t,x)g(2n)(t)dt to obtain∫ b

a
w(t)g(t)dt−

2n

∑
j=1

A1
j(x)g

( j−1)(x) = g(2n)(η) ·
∫ b

a
W 1

2n,w(t,x)dt. (1.31)

We calculate ∫ b

a
W2n(t,x)1dt =

∫ x

a
w1

1,2n(t)dt +
∫ b

x
w1

2,2n(t)dt

= w1
1,2n+1(x)−w1

2,2n+1(x) = A1
2n+1(x),

so we get the assertion. �

Now we can state the Lp−inequality for weighted one-point formula


