
Chapter1
Definitions and basic results

1.1 Convex functions

Convex functions are very important in the theory of inequalities. The third chapter of
the classical book of Hardy, Littlewood and Pólya [51] is devoted to the theory of convex
functions (see also [82]). In this section we give some of the results concerning convex
functions.

Definition 1.1 Let I be an interval in R. A function Φ : I → R is called convex if

Φ(λx+(1−λ )y)≤ λ Φ(x)+ (1−λ )Φ(y) (1.1)

for all points x,y ∈ I and all λ ∈ [0,1]. It is called strictly convex if the inequality (1.1)
holds strictly whenever x and y are distinct points and λ ∈ (0,1).

If −Φ is convex (respectively, strictly convex) then we say that Φ is concave (respec-
tively, strictly concave). If Φ is both convex and concave, Φ is said to be affine.

Remark 1.1 (a) For x,y ∈ I, p,q ≥ 0, p+q > 0, (1.1) is equivalent to

Φ
(

px+qy
p+q

)
≤ p

p+q
Φ(x)+

q
p+q

Φ(y).

(b) The simple geometrical interpretation of (1.1) is that the graph of Φ lies below its
chords.
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2 1 DEFINITIONS AND BASIC RESULTS

(c) If x1,x2,x3 are three points in I such that x1 < x2 < x3, then (1.1) is equivalent to∣∣∣∣∣∣
x1 Φ(x1) 1
x2 Φ(x2) 1
x3 Φ(x3) 1

∣∣∣∣∣∣= (x3 − x2)Φ(x1)+ (x1− x3)Φ(x2)+ (x2− x1)Φ(x3) ≥ 0

which is equivalent to

Φ(x2) ≤ x2− x3

x1− x3
Φ(x1)+

x1− x2

x1− x3
Φ(x3),

or, more symmetrically and without the condition of monotonicity on x1,x2,x3

Φ(x1)
(x1− x2)(x1 − x3)

+
Φ(x2)

(x2 − x3)(x2− x1)
+

Φ(x3)
(x3− x1)(x3 − x2)

≥ 0

Definition 1.2 Let I be an interval in R. A function Φ : I → R is called convex in the
Jensen sense, or J-convex on I (midconvex, midpoint convex) if for all points x,y ∈ I the
inequality

Φ
(

x+ y
2

)
≤ Φ(x)+ Φ(y)

2
(1.2)

holds. A J-convex function is said to be strictly J-convex if for all pairs of points (x,y),x �=
y, strict inequality holds in (1.2).

In the context of continuity the following criteria of equivalence of (1.1) and (1.2) is
valid.

Theorem 1.1 Let Φ : I → R be a continuous function. Then Φ is a convex function if and
only if Φ is a J-convex function.

Inequality (1.1) can be extended to the convex combinations of finitely many points in
I by mathematical induction. These extensions are known as discrete and integral Jensen’s
inequality.

Theorem 1.2 (THE DISCRETE CASE OF JENSEN’S INEQUALITY) A function Φ : I → R

is convex if and only if for all x1, ...,xn ∈ I and all scalars p1, ...., pn ∈ [0,1] with Pn = ∑n
1 pi

we have

Φ

(
1
Pn

n

∑
i=1

pixi

)
≤ 1

Pn

n

∑
i=1

piΦ(xi). (1.3)

Inequality (1.3) is strict if Φ is a strictly convex function, all points xi, i = 1, ...,n, n ∈ N

are disjoint and all scalars pi are positive.

Now, we introduce some necessary notation and recall some basic facts about convex
functions, log-convex functions (see e.g. [65], [82], [92]) as well as exponentially convex
functions (see e.g [15], [79], [81]).

In 1929, S. N. Bernstein introduced the notion of exponentially convex function in [15].
Later on D.V. Widder in [100] introduced these functions as a sub-class of convex function
in a given interval (a,b) (for details see [100], [101]).
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Definition 1.3 A positive function Φ is said to be logarithmically convex on an interval
I ⊆ R if logΦ is a convex function on I, or equivalently if for all x,y ∈ I and all α ∈ [0,1]

Φ(αx+(1−α)y)≤ Φα (x)Φ1−α Φ(y).

For such function Φ, we shortly say Φ is log-convex. A positive function Φ is log-convex
in the Jensen sense if for each x,y ∈ I

Φ2
(

x+ y
2

)
≤ Φ(x)Φ(y)

holds, i.e., if logΦ is convex in the Jensen sense.

Remark 1.2 A function Φ is log-convex on an interval I, if and only if for all x1,x2,x3 ∈ I,
x1 < x2 < x3, it holds

[Φ(x2)]x3−x1 ≤ [Φ(x1)]x3−x2 [Φ(x3)]x2−x1 . (1.4)

Furthermore, if x1,x2,y1,y2 ∈ I are such that x1 ≤ y1, x2 ≤ y2, x1 �= x2, y1 �= y2, then(
Φ(x2)
Φ(x1)

) 1
x2−x1 ≤

(
Φ(y2)
Φ(y1)

) 1
y2−y1

. (1.5)

Inequality (1.5) is known as Galvani’s theorem for log-convex functions Φ : I → R.

We continue with the definition of exponentially convex function as originally given in
[15] by Berstein (see also [9], [79], [81]).

Definition 1.4 A function Φ : (a,b) → R is exponentially convex if it is continuous and

n

∑
i, j=1

tit jΦ(xi + x j) ≥ 0, (1.6)

holds for every n ∈ N and all sequences (tn)n∈N and (xn)n∈N of real numbers, such that
xi + x j ∈ (a,b), 1 ≤ i, j ≤ n.

Moreover, the condition (1.6) can be replaced with a more suitable condition

n

∑
i, j=1

tit jΦ
(

xi + x j

2

)
≥ 0, (1.7)

which has to hold for all n ∈ N, all sequences (tn)n∈N of real numbers, and all sequences
(xn)n∈N in (a,b). More precisely, a function Φ : (a,b) → R is exponentially convex
if and only if it is continuous and fulfils (1.7). Condition (1.7) means that the matrix[
Φ( xi+x j

2 )
]n

i, j=1
is positive semi-definite matrix. Hence, its determinant must be non-

negative. For n = 2 this means that it holds

Φ(x1)Φ(x2)−Φ2
(

x1 + x2

2

)
≥ 0,
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hence, exponentially convex function is log-convex in the Jensen sense, and, being contin-
uous, it is also log-convex function.

We continue with the definition of n-exponentially convex function.

Definition 1.5 A function Φ : I → R is n-exponentially convex in the Jensen sense on I if

n

∑
i, j=1

tit jΦ
(

xi + x j

2

)
≥ 0

holds for all choices of ti ∈ R, xi ∈ I, i = 1, . . . ,n.
A function Φ : I → R is n-exponentially convex on I if it is n-exponentially convex in the
Jensen sense and continuous on I.

Remark 1.3 It is clear from the definition that 1-exponentially convex functions in the
Jensen sense are in fact non-negative functions. Also, n-exponentially convex functions in
the Jensen sense are k-exponentially convex in the Jensen sense for every k ∈ N, k ≤ n.

Proposition 1.1 Let I be an open interval in R. If Φ is n-exponentially convex in the

Jensen sense on J then the matrix
[
Φ
(

xi+x j
2

)]k

i, j=1
is positive semi-definite matrix for all

k ∈ N, k ≤ n. Particularly

det

[
Φ
(

xi + x j

2

)]k

i, j=1
≥ 0, f or all k ∈ N, k ≤ n.

Definition 1.6 Let I be an open interval in R. A function Φ : I → R is exponentially
convex in the Jensen sense on I if it is n-exponentially convex in the Jensen sense on I for
all n ∈ N.

Remark 1.4 It follows that a function is log-convex in the Jensen sense if and only if it is
2-exponentially convex in the Jensen sense.
Also, using basic convexity theory it follows that a function is log-convex if and only if it is
2-exponentially convex.

It is easily seen that a convex function is continuous on the interior of its domain, but
it may not be continuous at the boundary points of the domain.

Theorem 1.3 If Φ : I → R is a convex function, then Φ satisfies the Lipschitz condition
on any closed interval [a,b] contained in the interior of I, that is, there exists a constant K
so that for any two points x,y ∈ [a,b],

|Φ(x)−Φ(y)| ≤ K|x− y|.
Now, we continue with derivative of a convex function. The derivative of a convex

function is best studied in terms of the left and right derivatives defined by

Φ
′
−(x) = lim

y↗x

Φ(y)−Φ(x)
y− x

, Φ
′
+(x) = lim

y↘x

Φ(y)−Φ(x)
y− x

.
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The following result concerning the left and the right derivative of a convex function can
be seen e.g. in [92].

Theorem 1.4 Let I be an interval in R and Φ : I → R be convex. Then

(i) Φ′
− and Φ′

+ exist and are increasing on I, and Φ′
− ≤ Φ′

+ (if Φ is strictly convex, then
these derivatives are strictly increasing);

(ii) Φ′
exists, except possibly on a countable set, and on the complement of which it is

continuous.

Theorem 1.5 (a) Φ : [a,b] → R is (strictly) convex if there exists an (strictly) increas-
ing function f : [a,b] → R and a real number c (a < c < b) such that for all x and
a < x < b,

Φ(x) = Φ(c)+
∫ x

c
f (t)dt.

(b) If Φ is differentiable, then Φ is (strictly) convex if Φ′
is (strictly) increasing.

(c) If Φ′′
exists on (a,b), then Φ is convex if Φ′′

(x) ≥ 0. If Φ′′
(x) > 0, then Φ is strictly

convex.

Example 1.1 (a) The exponential function Φ : R → R, Φ(x) = ex is a strictly convex
function.

(b) Let Φ : R+ → R be defined by Φ(x) = xp, p ∈ R \ {0}. Obviously, Φ′(x) = pxp−1

and the function Φ is convex for p ∈ R\ [0,1), concave for p ∈ (0,1], and affine for
p = 1.

Remark 1.5 Let I be an open interval and let h ∈C2(I) be such that h′′ is bounded, that
is, m ≤ h′′ ≤ M. Then the functions Φ1,Φ2 defined by

Φ1(t) =
M
2

t2−h(t), Φ2(t) = h(t)− m
2

t2

are convex.

The geometric characterization depends upon the idea of a support line. The following
result can be seen e.g. in [92].

Theorem 1.6 (a) Φ : (a,b) → R is convex if there is at least one line of support for Φ
at each x0 ∈ (a,b), i.e.,

Φ(x) ≥ Φ(x0)+ λ (x− x0),∀x ∈ (a,b),

where λ depends on x0 and is given by λ = Φ′
(x0) when Φ′

exists, and
λ ∈ [Φ′

−(x0),Φ
′
+(x0)] when Φ′

−(x0) �= Φ′
+(x0).

(b) Φ : (a,b) → R is convex if the function Φ(x)−Φ(x0)− λ (x− x0) (the difference
between the function and its support) is decreasing for x < x0 and increasing for
x > x0.
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Definition 1.7 Let Φ : I −→ R be a convex function, then the sub-differential of Φ at x,
denoted by ∂Φ(x), is defined as

∂Φ(x) = {α ∈ R : Φ(y)−Φ(x)−α(y− x)≥ 0, y ∈ I}.

There is a connection between a convex function and its sub-differential. It is well-
known that ∂Φ(x) �= /0 for all x ∈ IntI. More precisely, at each point x ∈ IntI we have
−∞ < Φ′−(x) ≤ Φ′

+(x) < ∞ and

∂Φ(x) = [Φ′
−(x), Φ′

+(x)],

while the set on which Φ is not differentiable is at most countable. Moreover, each function
ϕ : I −→R such that ϕ(x) ∈ ∂Φ(x), whenever x ∈ IntI, is increasing on Int I. For any such
function ϕ and arbitrary x ∈ Int I, y ∈ I we have

Φ(y)−Φ(x)−ϕ(x)(y− x)≥ 0

and further

Φ(y)−Φ(x)−ϕ(x)(y− x) = |Φ(y)−Φ(x)−ϕ(x)(y− x)|
≥ ||Φ(y)−Φ(x)|− |ϕ(x)| · |y− x|| .

(1.8)

On the other hand, if Φ : I → R is a concave function, that is, −Φ is convex, then
∂Φ(x) = {α ∈ R : Φ(x)−Φ(y)−α(x− y) ≥ 0, y ∈ I} denotes the superdifferential of Φ
at the point x ∈ I. For all x ∈ IntI, in this setting we have −∞ < Φ′

+(x) ≤ Φ′−(x) < ∞ and
∂Φ(x) = [Φ′

+(x), Φ′−(x)] �= /0. Hence, the inequality

Φ(x)−Φ(y)−ϕ(x)(x− y)≥ 0

holds for all x ∈ Int I, y ∈ I, and all real functions ϕ on I, such that ϕ(z) ∈ ∂Φ(z), z ∈ Int I.
Finally, we get

Φ(x)−Φ(y)−ϕ(x)(x− y) = |Φ(x)−Φ(y)−ϕ(x)(x− y)|
≥ | |Φ(y)−Φ(x)|− |ϕ(x)| · |y− x| | .

(1.9)

Note that, although the symbol ∂Φ(x) has two different notions, it will be clear from the
context whether it applies to a convex or to a concave function Φ. Many further information
on convex and concave functions can be found e.g. in the monographs [82] and [92] and
in references cited therein.
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1.2 Superquadratic and subquadratic functions

The concept of superquadratic and subquadratic functions is introduced by Abramovich,
Jameson and Sinnamon in [4] (see also [3]).

Definition 1.8 (See [4, Definition 2.1].) A function ϕ : [0,∞) → R is superquadratic
provided that for all x ≥ 0 there exists a constant Cx ∈ R such that

ϕ(y)−ϕ(x)−ϕ (|y− x|) ≥Cx (y− x) , (1.10)

for all y ≥ 0. We say that ϕ is subquadratic if −ϕ is superquadratic. We say that ϕ is a
strictly superquadratic function if for x �= y,x,y �= 0 there is strict inequality in (1.10). We
say that ϕ is a strictly subquadratic function if −ϕ is a strictly superquadratic function.

Lemma 1.1 (See [4, Theorem 2.3].) Let (Ω,μ) be a probability measure space. The
inequality

ϕ
(∫

Ω
f (s)dμ(s)

)
≤

∫
Ω

ϕ( f (s))dμ(s)−
∫

Ω
ϕ
(∣∣∣∣ f (s)−∫

Ω
f (s)dμ(s)

∣∣∣∣)dμ(s) (1.11)

holds for all probability measures μ and all non-negative μ−integrable functions f if
and only if ϕ is superquadratic. Moreover, (1.11) holds in the reversed direction if and
only if ϕ is subquadratic.

Proof. See [4] and [3] for the details. �

Definition 1.9 A function f : [0,∞)→R is superadditive provided f (x+y)≥ f (x)+ f (y)
for all x, y ≥ 0. If the reverse inequality holds, then f is said to be subadditive.

Lemma 1.2 (See [4, Lemma 3.1].) Suppose ϕ : [0,∞) → R is continuously differentiable

and ϕ(0) ≤ 0. If ϕ ′ is superadditive or ϕ ′(x)
x is nondecreasing, then ϕ is superquadratic.

Proof. See [4] for details. �

Remark 1.6 By Lemma 1.2, the function ϕ(x) = xp is superquadratic for p ≥ 2 and
subquadratic for 1 < p ≤ 2. Therefore, by Lemma 1.1, for p ≥ 2 the inequality(∫

Ω
f (s)dμ(s)

)p

≤
∫

Ω
f p(s)dμ(s)−

∫
Ω

∣∣∣∣ f (s)−∫
Ω

f (s)dμ(s)
∣∣∣∣p dμ(s)

holds and the reversed inequality holds when 1 < p≤ 2 (see also [2, Example 1, p. 1448]).
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1.3 Operator convex functions

We shall first recall the definition of an operator convex function.

Definition 1.10 Let I be a real interval of any type. A continuous function f : I → R is
said to be operator convex if

f (λx+(1−λ )y)≤ λ f (x)+ (1−λ ) f (y)

holds for each λ ∈ [0,1] and every pair of self-adjoint x and y (acting) on an infinite
dimensional Hilbert space H with spectra in I (the ordering is defined by setting x ≤ y if
y− x is positive semi-definite ).

Let f be an operator convex function defined on an interval I. Ch. Davis [34] proved a
Schwartz type inequality

f (Φ(x)) ≤ Φ( f (x)),

where Φ : A → B(H) is a unital completely positive linear map from a C∗-algebra A to
linear operators on a Hilbert space H and x is a self-adjoint element in A with spectrum in
I.

Let us recall the definition of a unital field. Assume that there is a field (Φt )t∈T of pos-
itive linear mappings Φt : A→ B from A to anotherC∗-algebra B. We say that such a field
is continuous if the function t → Φt(x) is continuous for every x ∈ A. If the C∗-algebras
are unital and the field t → Φt(1) is integrable with integral 1, that is

∫
T Φt(1)dμ(t) = 1,

we say that (Φt)t∈T is unital.

In particular, F. Hansen et al. [46] proved the following result:

Theorem 1.7 Let f : I → R be an operator convex function defined on an interval I, and
let A and B be unital C∗-algebras. If (Φt)t∈T is a unital field of positive linear mappings
Φt : A → B defined on a locally compact space T with a bounded positive Radon measure
μ , then the Jensen type inequality

f

(∫
T

Φt(xt))dμ(t)
)
≤

∫
T

Φt( f (xt ))dμ(t)

holds for every bounded continuous field (xt)t∈T of self-adjoint elements in A with spectra
contained in I.
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1.4 Fractional integrals and fractional derivatives

First, let us recall some facts about fractional derivatives needed in the sequel, for more
details see e.g. [9], [43].

Let 0 < a < b ≤ ∞. By Cm([a,b]) we denote the space of all functions on [a,b] which
have continuous derivatives up to order m, and AC([a,b]) is the space of all absolutely
continuous functions on [a,b]. By ACm([a,b]) we denote the space of all functions g ∈
Cm−1([a,b]) with g(m−1) ∈ AC([a,b]). For any α ∈ R we denote by [α] the integral part of
α (the integer k satisfying k ≤ α < k+1) and �α� is the ceiling of α (min{n∈ N,n ≥ α}).
By L1(a,b) we denote the space of all functions integrable on the interval (a,b), and by
L∞(a,b) the set of all functions measurable and essentially bounded on (a,b). Clearly,
L∞(a,b) ⊂ L1(a,b).

Now, we give well known definitions of the Riemann-Liouville fractional integrals,
see [67]. Let [a,b] be a finite interval on real axis R. The Riemann-Liouville fractional
integrals Iα

a+ f and Iα
b− f of order α > 0 are defined by

Iα
a+ f (x) =

1
Γ(α)

x∫
a

f (y)(x− y)α−1dy, (x > a)

and

Iα
b− f (x) =

1
Γ(α)

b∫
x

f (y)(y− x)α−1dy, (x < b)

respectively. Here Γ(α) is the Gamma function. These integrals are called the right-
sided and left-sided fractional integrals. Some recent results involving Riemann-Liouville
fractional integrals can be seen in e.g [10], [11], [61] and [63]. We denote some properties
of the operators Iα

a+ f and Iα
b− f of order α > 0, see also [96]. The first result yields that the

fractional integral operators Iα
a+ f and Iα

b− f are bounded in Lp(a,b), 1 ≤ p ≤ ∞, that is

‖Iα
a+ f‖p ≤ K‖ f‖p, ‖Iα

b− f‖p ≤ K‖ f‖p, (1.12)

where

K =
(b−a)α

αΓ(α)
.

Inequality (1.12), that is the result involving the left-sided fractional integral, was proved
by G. H. Hardy in one of his first papers, see [49]. He did not write down the constant, but
the calculation of the constant was hidden inside his proof. Inequality (1.12) is referred to
as inequality of G. H. Hardy.

Next we give result with respect to the generalizedRiemann-Liouville fractional deriva-
tive. Let us recall the definition.
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Let α > 0 and n = [α] + 1 where [·] is the integral part. We define the generalized
Riemann-Liouville fractional derivative of f of order α by

(Dα
a f )(x) =

1
Γ(n−α)

(
d
dx

)n ∫ x

a
(x− y)n−α−1 f (y)dy .

In addition, we stipulate

D0
a f := f =: I0

a f , I−α
a f := Dα

a f if α > 0.

If α ∈ N then Dα
a f = dα f

dxα , the ordinary α-order derivative.
The space Iα

a (L(a,b)) is defined as the set of all functions f on [a,b] of the form f =
Iα
a ϕ for some ϕ ∈ L(a,b), [96, Chapter 1, Definition 2.3]. According to Theorem 2.3 in
[96, p. 43], the latter characterization is equivalent to the condition

In−α
a f ∈ ACn[a,b] , (1.13)

d j

dx j I
n−α
a f (a) = 0 , j = 0,1, . . . ,n−1 .

A function f ∈ L(a,b) satisfying (1.13) is said to have an integrable fractional derivative
Dα

a f , [96, Chapter1, Definition 2.4].

The following lemma summarizes conditions in identity for generalized Riemann-
Liouville fractional derivative.

Lemma 1.3 Let β > α ≥ 0, n = [β ]+1, m = [α]+1. Identity

Dα
a f (x) =

1
Γ(β −α)

∫ x

a
(x− y)β−α−1Dβ

a f (y)dy , x ∈ [a,b] .

is valid if one of the following conditions holds:

(i) f ∈ Iβ
a (L(a,b)).

(ii) In−β
a f ∈ ACn[a,b] and Dβ−k

a f (a) = 0 for k = 1, . . .n.

(iii) Dβ−k
a f ∈C[a,b] for k = 1, . . . ,n, Dβ−1

a f ∈AC[a,b] and Dβ−k
a f (a) = 0 for k = 1, . . .n.

(iv) f ∈ ACn[a,b], Dβ
a f ∈ L(a,b), Dα

a f ∈ L(a,b), β −α /∈ N, Dβ−k
a f (a) = 0 for k =

1, . . . ,n and Dα−k
a f (a) = 0 for k = 1, . . . ,m.

(v) f ∈ ACn[a,b], Dβ
a f ∈ L(a,b), Dα

a f ∈ L(a,b), β − α = l ∈ N, Dβ−k
a f (a) = 0 for

k = 1, . . . , l.

(vi) f ∈ ACn[a,b], Dβ
a f ∈ L(a,b), Dα

a f ∈ L(a,b) and f (a) = f ′(a) = · · ·= f (n−2)(a) = 0.

(vii) f ∈ ACn[a,b], Dβ
a f ∈ L(a,b), Dα

a f ∈ L(a,b), β /∈ N and Dβ−1
a f is bounded in a

neighborhood of t = a.
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The definition of Canavati-type fractional derivative is given in [9] but we will use the
Canavati-type fractional derivative given in [13] with some new conditions. Now we define
Canavati-type fractional derivative (ν−fractional derivative of f ). We consider

Cν([0,1]) = { f ∈Cn([0,1]) : I1−ν̄ f (n) ∈C1([0,1])},

ν > 0, n = [ν], [.] is the integral part, and ν̄ = ν −n,0 ≤ ν̄ < 1.
For f ∈Cν([0,1]), the Canavati-ν fractional derivative of f is defined by

Dν f = DI1−ν̄ f (n),

where D = d/dx.

Lemma 1.4 Let ν > γ ≥ 0, n = [ν], m = [γ]. Let f ∈ Cν([0,1]), be such that f (i)(0) =
0, i = m,m+1, ...,n−1. Then

(i) f ∈Cγ ([0,1])

(ii) (Dγ f )(x) = 1
Γ(ν−γ)

x∫
0
(x− t)ν−γ−1(Dν f )(t)dt,

for every x ∈ [a,b].

Next, we define Caputo fractional derivative, for details see [9, p. 449]. Let ν ≥ 0,
n = �ν�, g ∈ ACn([a,b]). The Caputo fractional derivative is given by

Dν
∗ag(t) =

1
Γ(n−ν)

x∫
a

g(n)(y)
(x− y)ν−n+1 dy,

for all x ∈ [a,b]. The above function exists almost everywhere for x ∈ [a,b].
We continue with the following lemma that is given in [12].

Lemma 1.5 Let ν > γ ≥ 0, n = [ν] + 1, m = [γ] + 1 and f ∈ ACn([a,b]). Suppose that
one of the following conditions hold:

(a) ν,γ �∈ N0 and f (i)(a) = 0 for i = m, ...,n−1

(b) ν ∈ N0,γ �∈ N0 and f (i)(a) = 0 for i = m, ...,n−2

(c) ν �∈ N0,γ ∈ N0 and f (i)(a) = 0 for i = m−1, ...,n−1

(d) ν ∈ N0,γ ∈ N0 and f (i)(a) = 0 for i = m−1, ...,n−2.

Then

Dγ
∗a f (x) =

1
Γ(ν − γ)

x∫
a

(x− y)ν−γ−1Dν
∗a f (y)dy

for all a ≤ x ≤ b.
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Now, we define Hadamard-type fractional integrals. Let (a,b) be finite or infinite inter-
val of R+ and α > 0. The left- and right-sided Hadamard-type fractional integrals of order
α > 0 are given by

(Jα
a+ f )(x) =

1
Γ(α)

x∫
a

(
log

x
y

)α−1 f (y)dy
y

, x > a

and

(Jα
b− f )(x) =

1
Γ(α)

b∫
x

(
log

y
x

)α−1 f (y)dy
y

, x < b

respectively.
We continue with definitions and some properties of the fractional integrals of a func-

tion f with respect to a given function g. For details see e.g. [67, p. 99].

Let (a,b), −∞ ≤ a < b ≤ ∞ be a finitive or infinitive interval of the real line R and
α > 0. Also let g be an increasing function on (a,b] such that g′ is continuous on (a,b).
The left- and right-sided fractional integrals of a function f with respect to another function
g in (a,b) are given by

(Iα
a+;g f )(x) =

1
Γ(α)

∫ x

a

g′(t) f (t)dt
[g(x)−g(t)]1−α , x > a (1.14)

and

(Iα
b−;g f )(x) =

1
Γ(α)

∫ b

x

g′(t) f (t)dt
[g(t)−g(x)]1−α , x < b, (1.15)

respectively.

Remark 1.7 If g(x) = x, then Iα
a+;x f reduces to Iα

a+ f and Iα
b−;x f reduces to Iα

b− f , that is to
Riemann-Liouville fractional integrals. Notice also that Hadamard fractional integrals of
order α are special case of the left- and right-sided fractional integrals of a function f with
respect to another function g(x) = log(x) in [a,b] where 0 ≤ a < b ≤ ∞.

We also recall the definition of the Erdelyi-Kóber type fractional integrals. For details
see [96] (also see [35, p, 154]).

Let (a,b),(0 ≤ a < b ≤ ∞) be finite or infinite interval of R+ Let α > 0,σ > 0, and
η ∈ R. The left- and right-sided Erdelyi-Kóber type fractional integral of order α > 0 are
defined by

(Iα
a+;σ ;η f )(x) =

σx−σ(α+η)

Γ(α)

x∫
a

tση+σ−1 f (t)dt
(xσ − tσ)1−α , (x > a)

and

(Iα
b−;σ ;η f )(x) =

σxση

Γ(α)

∫ b

x

tσ(1−η−α)−1 f (t)dt
(tσ − xσ )1−α , (x < b)

respectively.
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We conclude this section with multidimensional fractional integrals. Such type of frac-
tional integrals are usually generalization of the corresponding one-dimensional fractional
integral and fractional derivative.

For x = (x1, ...,xn) ∈ R
n and α = (α1, ...,αn), we use the following notations:

Γ(α) = (Γ(α1) · · ·Γ(αn)), [a,b] = [a1,b1]×·· ·× [an,bn],

and by x > a we mean x1 > a1, ...,xn > an.
We define the mixed Riemann-Liouville fractional integrals of order α > 0 as

(Iα
a+ f )(x) =

1
Γ(α)

x1∫
a1

· · ·
xn∫

an

f (t)(x− t)α−1dt, (x > a)

and

(Iα
b− f )(x) =

1
Γ(α)

b1∫
x1

· · ·
bn∫

xn

f (t)(t−x)α−1dt, (x < b).


