
Chapter1

Basic results and definitions

1.1 Steffensen’s inequality

Since its appearance in 1918 Steffensen’s inequality has been a subject of investigation
by many mathematicians. The book [82] is devoted to generalizations and refinements of
Steffensen’s inequality and its connection to other inequalities, such as Gauss’, Jensen-
Steffensen’s, Hölder’s and Iyengar’s inequality.

In this section we recall some important generalizations and refinements of Steffensen’s
inequality.

The original version from [85] has the following form.

Theorem 1.1 Suppose that f and g are integrable functions defined on (a,b), f is non-
increasing and for each t ∈ (a,b) 0 ≤ g ≤ 1. Then

∫ b

b−
f (t)dt ≤

∫ b

a
f (t)g(t)dt ≤

∫ a+

a
f (t)dt, (1.1)

where

 =
∫ b

a
g(t)dt. (1.2)
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Proof. The proof of the second inequality in (1.1) goes as follows.∫ a+

a
f (t)dt −

∫ b

a
f (t)g(t)dt =

∫ a+

a
[1−g(t)] f (t)dt−

∫ b

a+
f (t)g(t)dt

≥ f (a+ )
∫ a+

a
[1−g(t)]dt−

∫ b

a+
f (t)g(t)dt

= f (a+ )
[
 −

∫ a+

a
g(t)dt

]
−
∫ b

a+
f (t)g(t)dt

= f (a+ )
∫ b

a+
g(t)dt−

∫ b

a+
f (t)g(t)dt

=
∫ b

a+
g(t)[ f (a+ )− f (t)]dt ≥ 0.

The first inequality in (1.1) is proved in a similar way, but it also follows from the second
one. One merely sets G(t) = 1− g(t) and  =

∫ b
a G(t)dt. Since 0 ≤ g(t) ≤ 1 on (a,b)

implies 0 ≤ G(t) ≤ 1 on (a,b) and b−a =  +. Using the second inequality in (1.1) we
obtain ∫ b

a
f (t)G(t)dt ≤

∫ a+

a
f (t)dt,∫ b

a
f (t)[1−g(t)]dt ≤

∫ b−

a
f (t)dt,∫ b

a
f (t)dt−

∫ b−

a
f (t)dt ≤

∫ b

a
f (t)g(t)dt.

Hence, ∫ b

b−
f (t)dt ≤

∫ b

a
f (t)g(t)dt,

which is the first inequality in (1.1). �

Mitrinović stated in [48] (see also [82, p. 15]) that inequalities in (1.1) follow from the
identities

∫ a+

a
f (t)dt −

b∫
a

f (t)g(t)dt

=
∫ a+

a
[ f (t)− f (a+ )][1−g(t)]dt+

∫ b

a+
[ f (a+ )− f (t)]g(t)dt (1.3)

and

∫ b

a
f (t)g(t)dt−

b∫
b−

f (t)dt

=
∫ b−

a
[ f (t)− f (b− )]g(t)dt +

∫ b

b−
[ f (b− )− f (t)][1−g(t)]dt. (1.4)
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Applying Steffensen’s inequality to appropriate functions, in [45] Masjed-Jamei, Qi
and Srivastava obtained the following Steffensen type inequalities:

Theorem 1.2 If f and g are integrable functions such that f is nonincreasing and

− 
b−a

(
1− 1

q

)
≤ g(x) ≤ 1− 

b−a

(
1− 1

q

)
(1.5)

on (a,b), where q �= 0 and

 = q
∫ b

a
g(x)dx,

then∫ b

b−
f (x)dx− 

b−a

(
1− 1

q

)∫ b

a
f (x)dx ≤

∫ b

a
f (x)g(x)dx

≤
∫ a+

a
f (x)dx− 

b−a

(
1− 1

q

)∫ b

a
f (x)dx.

(1.6)

The inequalities (1.6) are reversed for f nondecreasing.

Identities (1.3) and (1.4) are starting points for researching the conditions of Stef-
fensen’s inequality and eventually changing them. Milovanović and Pečarić in their paper
[47], using integration by parts in identities (1.3) and (1.4), obtained weaker conditions
on the function g. Vasić and Pečarić in paper [87] showed that this weaker conditions are
necessary and sufficient. Hence, we have the following theorem.

Theorem 1.3 Let f and g be integrable functions on [a,b] and let  =
∫ b
a g(t)dt.

(a) The second inequality in (1.1) holds for every nonincreasing function f if and only
if ∫ x

a
g(t)dt ≤ x−a and

∫ b

x
g(t)dt ≥ 0, for every x ∈ [a,b]. (1.7)

(b) The first inequality in (1.1) holds for every nonincreasing function f if and only if∫ b

x
g(t)dt ≤ b− x and

∫ x

a
g(t)dt ≥ 0, for every x ∈ [a,b]. (1.8)

Using identities (1.3) and (1.4) and integration by parts, Pečarić in [55] also proved
conditions for inverse inequalities in (1.1).

Theorem 1.4 Let f : I → R, g : [a,b] → R ([a,b] ⊆ I where I is an interval in R) be
integrable functions, and a+ ∈ I where  is given by (1.2). Then∫ a+

a
f (t)dt ≤

∫ b

a
f (t)g(t)dt
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holds for every nonincreasing function f if and only if∫ x

a
g(t)dt ≥ x−a, for x ∈ [a,a+ ] and

∫ b

x
g(t)dt ≤ 0, for x ∈ (a+ ,b],

and 0 ≤  ≤ b−a;
or ∫ x

a
g(t)dt ≥ x−a, for x ∈ [a,b],

and  > b−a;
or ∫ b

x
g(t)dt ≤ 0, for x ∈ [a,b]

and  < 0.

Theorem 1.5 Let f : I → R, g : [a,b] → R ([a,b] ⊆ I where I is an interval in R) be
integrable functions, and b− ∈ I where  is given by (1.2). Then∫ b

b−
f (t)dt ≥

∫ b

a
f (t)g(t)dt

holds for every nonincreasing function f if and only if∫ x

a
g(t)dt ≤ 0, for x ∈ [a,b− ] and

∫ b

x
g(t)dt ≥ b− x, for x ∈ (b− ,b],

and 0 ≤  ≤ b−a;
or ∫ b

x
g(t)dt ≥ b− x, for x ∈ [a,b],

and  > b−a;
or ∫ x

a
g(t)dt ≤ 0, for x ∈ [a,b]

and  < 0.

In 1982 Pečarić proved the following generalization of Steffensen’s inequality (see
[56]).

Theorem 1.6 Let h be a positive integrable function on [a,b] and f be an integrable
function such that f/h is nondecreasing on [a,b]. If g is a real-valued integrable function
such that 0 ≤ g ≤ 1, then ∫ b

a
f (t)g(t)dt ≥

∫ a+

a
f (t)dt (1.9)

holds, where  is the solution of the equation∫ a+

a
h(t)dt =

∫ b

a
h(t)g(t)dt. (1.10)

If f/h is a nonincreasing function, then the reverse inequality in (1.9) holds.
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Theorem 1.7 Let the conditions of Theorem 1.6 be fulfilled. Then∫ b

a
f (t)g(t)dt ≤

∫ b

b−
f (t)dt,

where  is the solution of the equation∫ b

b−
h(t)dt =

∫ b

a
h(t)g(t)dt. (1.11)

For h(x) = 1 we have Steffensen’s inequality.
In [46] Mercer proved the following generalization of Steffensen’s inequality.

Theorem 1.8 Let f ,g and h be integrable functions on (a,b) with f nonincreasing and
0 ≤ g ≤ h. Then ∫ b

b−
f (t)h(t)dt ≤

∫ b

a
f (t)g(t)dt ≤

∫ a+

a
f (t)h(t)dt, (1.12)

where  is given by ∫ a+

a
h(t)dt =

∫ b

a
g(t)dt. (1.13)

Wu and Srivastava in [93] and Liu in [44] noted that the generalization due to Mercer
is incorrect as stated. They have proved that it is true if we add the condition:∫ b

b−
h(t)dt =

∫ b

a
g(t)dt. (1.14)

As proven by Pečarić, Perušić and Smoljak in [61], a corrected version of Mercer’s
result follows from Theorems 1.6 and 1.7, and is stated as following.

Theorem 1.9 Let h be a positive integrable function on [a,b] and f ,g be integrable func-
tions on [a,b] such that f is nonincreasing on [a,b] and 0 ≤ g ≤ h.

a) Then ∫ b

a
f (t)g(t)dt ≤

∫ a+

a
f (t)h(t)dt,

where  is given by (1.13).

b) Then ∫ b

b−
f (t)h(t)dt ≤

∫ b

a
f (t)g(t)dt,

where  is given by (1.14).

In [46] Mercer also gave the following theorem.
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Theorem 1.10 Let f ,g,h and k be integrable functions on (a,b) with k > 0, f/k nonin-
creasing and 0 ≤ g ≤ h. Then

∫ b

a
f (t)g(t)dt ≤

∫ a+

a
f (t)h(t)dt,

where  is given by ∫ a+

a
h(t)k(t)dt =

∫ b

a
g(t)k(t)dt. (1.15)

As showed in [82, p. 57] Theorem 1.10 is equivalent to Theorem 1.6.
Next, we recall a corrected and refined version of Mercer’s result given by Wu and

Srivastava in [93].

Theorem 1.11 Let f ,g and h be integrable functions on [a,b] with f nonincreasing and
let 0 ≤ g ≤ h. Then the following integral inequalities hold true

∫ b

b−
f (t)h(t)dt ≤

∫ b

b−
( f (t)h(t)− [ f (t)− f (b− )][h(t)−g(t)])dt

≤
∫ b

a
f (t)g(t)dt ≤

∫ a+

a
( f (t)h(t)− [ f (t)− f (a+ )][h(t)−g(t)])dt

≤
∫ a+

a
f (t)h(t)dt,

where  satisfies ∫ a+

a
h(t)dt =

∫ b

a
g(t)dt =

∫ b

b−
h(t)dt. (1.16)

Motivated by refinement of Steffensen’s inequality given in [93], Pečarić, Perušić and
Smoljak [61] obtained the following refined version of results given in Theorems 1.6 and
1.7.

Corollary 1.1 Let h be a positive integrable function on [a,b] and f ,g be integrable func-
tions on [a,b] such that f/h is nonincreasing and 0 ≤ g ≤ 1. Then

∫ b

a
f (t)g(t)dt ≤

∫ a+

a

(
f (t)−

[
f (t)
h(t)

− f (a+ )
h(a+ )

]
h(t)[1−g(t)]

)
dt

≤
∫ a+

a
f (t)dt,

(1.17)

where  is given by (1.10).
If f/h is a nondecreasing function, then the reverse inequality in (1.17) holds.
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Corollary 1.2 Let h be a positive integrable function on [a,b] and f ,g be integrable func-
tions on [a,b] such that f/h is nonincreasing and 0 ≤ g ≤ 1. Then∫ b

b−
f (t)dt ≤

∫ b

b−

(
f (t)−

[
f (t)
h(t)

− f (b− )
h(b− )

]
h(t)[1−g(t)]

)
dt

≤
∫ b

a
f (t)g(t)dt

(1.18)

where  is given by (1.11).
If f/h is a nondecreasing function, then the reverse inequality in (1.18) holds.

Furthermore, in [93] Wu and Srivastava proved a new sharpened and generalized ver-
sion of inequality (1.12). In [61] authors separated this result into two theorems to obtain
weaker conditions on  .

Theorem 1.12 Let f ,g,h and  be integrable functions on [a,b] with f nonincreasing
and let 0 ≤ (t) ≤ g(t) ≤ h(t)−(t), t ∈ [a,b]. Then∫ b

a
f (t)g(t)dt ≤

∫ a+

a
f (t)h(t)dt−

∫ b

a
| f (t)− f (a+ )|(t)dt

where  is given by (1.13).

Theorem 1.13 Let f ,g,h and  be integrable functions on [a,b] with f nonincreasing
and let 0 ≤ (t) ≤ g(t) ≤ h(t)−(t), t ∈ [a,b]. Then∫ b

b−
f (t)h(t)dt +

∫ b

a
| f (t)− f (b− )|(t)dt ≤

∫ b

a
f (t)g(t)dt

where  is given by (1.14).

The following theorem is Cerone’s generalization of Steffensen’s inequality given in
[15]. This generalization allows bounds that involve any two subintervals instead of re-
stricting them to include the end points.

Theorem 1.14 Let f ,g : [a,b] → R be integrable functions on [a,b] and let f be nonin-
creasing. Further, let 0 ≤ g ≤ 1 and

 =
∫ b

a
g(t)dt = di− ci,

where [ci,di] ⊆ [a,b] for i = 1,2 and d1 ≤ d2. Then∫ d2

c2

f (t)dt − r(c2,d2) ≤
∫ b

a
f (t)g(t)dt ≤

∫ d1

c1

f (t)dt +R(c1,d1)

holds, where

r(c2,d2) =
∫ b

d2

( f (c2)− f (t))g(t)dt ≥ 0

and

R(c1,d1) =
∫ c1

a
( f (t)− f (d1))g(t)dt ≥ 0.
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In 1959 Bellman gave an Lp generalization of Steffensen’s inequality (see [11]). As
noted by many mathematicians Bellman’s result is incorrect as stated. A comprehensive
survey of corrected versions and generalizations of Bellman’s result can be found in [82].
In the following theorem we recall generalization of Bellman’s result obtained by Pachpatte
in [53].

Theorem 1.15 Let f ,g,h be real-valued integrable functions defined on [0,1] such that
f (t) ≥ 0, h(t) ≥ 0, t ∈ [0,1], f/h is nonincreasing on [0,1] and 0 ≤ g ≤ A, where A is a
real positive constant. If p ≥ 1, then(∫ 1

0
g(t) f (t)dt

)p

≤ Ap
∫ 

0
f p(t)dt, (1.19)

where  is the solution of the equation∫ 

0
hp(t)dt =

1
Ap

(∫ 1

0
hp(t)g(t)dt

)(∫ 1

0
g(t)dt

)p−1

.

In [24] Gauss mentioned the following inequality:

Theorem 1.16 If f is a nonnegative nonincreasing function and k > 0, then∫ 

k
f (x)dx ≤ 4

9k2

∫ 

0
x2 f (x)dx. (1.20)

In [59] Pečarić proved the following result.

Theorem 1.17 Let G : [a,b] → R be an increasing function and let f : I → R be a non-
increasing function (I is an interval from R such that a,b,G(a),G(b) ∈ I). If G(x) ≥ x
then ∫ G(b)

G(a)
f (x)dx ≤

∫ b

a
f (x)G′(x)dx. (1.21)

If G(x) ≤ x, the reverse inequality in (1.21) is valid.
If f is a nondecreasing function and G(x) ≥ x then the inequality (1.21) is reversed.

Inequality (1.21) is usually called Gauss-Steffensen’s inequality. As pointed out in
[82] Gauss-Steffensen’s inequality includes as special cases three famous inequalities:
Volkov’s, Steffensen’s and Ostrowski’s inequality.

In [9] Alzer gave a lower bound for Gauss’ inequality (1.20). In fact, he proved the
following theorem.

Theorem 1.18 Let g : [a,b] → R be increasing, convex and differentiable, and let
f : I → R be nonincreasing function. Then∫ b

a
f (s(x))g′(x)dx ≤

∫ g(b)

g(a)
f (x)dx ≤

∫ b

a
f (t(x))g′(x)dx, (1.22)

where

s(x) =
g(b)−g(a)

b−a
(x−a)+g(a), (1.23)
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and
t(x) = g′(x0)(x− x0)+g(x0), x0 ∈ [a,b]. (1.24)

(I is an interval containing a,b,g(a),g(b),t(a) and t(b).)
If either g is concave or f is nondecreasing, then the reversed inequalities hold.

Remark 1.1 If we consider only the left-hand side inequality in (1.22), interval I should
only contain a,b,g(a) and g(b). When considering the right-hand side inequality in (1.22),
interval I should also contain t(a) and t(b).

1.2 Convex functions

In this section we give definitions and some properties of convex functions. Convex func-
tions are very important in the theory of inequalities. The third chapter of the classical
book of Hardy, Littlewood and Pólya [27] is devoted to the theory of convex functions (see
also [52]).

Definition 1.1 Let I be an interval in R. A function f : I → R is called convex if

f (x+(1− )y)≤  f (x)+ (1− ) f (y) (1.25)

for all points x,y ∈ I and all  ∈ [0,1]. It is called strictly convex if the inequality (1.25)
holds strictly whenever x and y are distinct points and  ∈ (0,1).

If the inequality in (1.25) is reversed, then f is said to be concave. It is called strictly
concave if the reversed inequality (1.25) holds strictly whenever x and y are distinct points
and  ∈ (0,1).

If f is both convex and concave, f is said to be affine.

Remark 1.2 (a) For x,y ∈ I, p,q ≥ 0, p+q > 0, (1.25) is equivalent to

f

(
px+qy
p+q

)
≤ p f (x)+q f (y)

p+q
.

(b) The simple geometrical interpretation of (1.25) is that the graph of f lies below its
chords.

(c) If x1,x2,x3 are three points in I such that x1 < x2 < x3, then (1.25) is equivalent to∣∣∣∣∣∣
x1 f (x1) 1
x2 f (x2) 1
x3 f (x3) 1

∣∣∣∣∣∣= (x3− x2) f (x1)+ (x1− x3) f (x2)+ (x2− x1) f (x3) ≥ 0

which is equivalent to

f (x2) ≤ x2 − x3

x1 − x3
f (x1)+

x1− x2

x1− x3
f (x3),
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or, more symmetrically and without the condition of monotonicity on x1,x2,x3

f (x1)
(x1 − x2)(x1− x3)

+
f (x2)

(x2− x3)(x2 − x1)
+

f (x3)
(x3 − x1)(x3 − x2)

≥ 0.

Proposition 1.1 If f is a convex function on I and if x1 ≤ y1, x2 ≤ y2, x1 �= x2, y1 �= y2,
then the following inequality is valid

f (x2)− f (x1)
x2− x1

≤ f (y2)− f (y1)
y2− y1

.

If the function f is concave, the inequality is reversed.

Definition 1.2 Let I be an interval in R. A function f : I → R is called convex in the
Jensen sense, or J-convex on I (midconvex, midpoint convex) if for all points x,y ∈ I the
inequality

f

(
x+ y

2

)
≤ f (x)+ f (y)

2
(1.26)

holds. A J-convex function is said to be strictly J-convex if for all pairs of points (x,y),x �=
y, strict inequality holds in (1.26).

In the context of continuity the following criteria of equivalence of (1.25) and (1.26) is
valid.

Theorem 1.19 Let f : I → R be a continuous function. Then f is a convex function if
and only if f is a J-convex function.

Definition 1.3 Let I be an interval in R. A function f : I → R is called Wright convex
function if for each x ≤ y, z ≥ 0, x,y+ z ∈ I, the inequality

f (x+ z)− f (x) ≤ f (y+ z)− f (y)

holds.

Next, we want do define convex functions of higher order, but first we need to define
divided differences.

Definition 1.4 Let f be a function defined on [a,b]. The n-th order divided difference of
f at distinct points x0,x1, . . . ,xn in [a,b] is defined recursively by

[x j; f ] = f (x j), j = 0, . . . ,n

and

[x0,x1, . . . ,xn; f ] =
[x1, . . . ,xn; f ]− [x0, . . . ,xn−1; f ]

xn − x0
. (1.27)
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Remark 1.3 The value [x0,x1, . . . ,xn; f ] is independent of the order of the points x0, . . . ,xn.
Previous definition can be extended to include the case in which some or all of the points
coincide by assuming that x0 ≤ ·· · ≤ xk and letting

[x, . . . ,x︸ ︷︷ ︸
j+1 times

; f ] =
f ( j)(x)

j!
,

provided that f ( j)(x) exists. Note that (1.27) is equivalent to

[x0, . . . ,xn; f ] =
n


k=0

f (xk)
 ′(xk)

, where  ′(xk) =
n


j=0
j �=k

(xk − x j).

Definition 1.5 Let n ∈ N. Function f : [a,b] → R is said to be n-convex on [a,b] if and
only if for every choice of n+1 distinct points x0,x1, . . . ,xn in [a,b]

[x0,x1, . . . ,xn; f ] ≥ 0. (1.28)

If the inequality in (1.28) is reversed, function f is said to be n-concave on [a,b] . If the
inequality is strict, f is said to be strictly n−convex (n−concave) function.

Remark 1.4 Specially, 0−convex function is nonnegative function, 1−convex function
is nondecreasing function, 2-convex function is convex function.

Theorem 1.20 If f (n) exists, then f is n−convex if and only if f (n) ≥ 0.

Definition 1.6 A positive function f is said to be logarithmically convex on an interval
I ⊆ R if log f is a convex function on I, or equivalently if for all x,y ∈ I and all  ∈ [0,1]

f (x+(1−)y)≤ f  (x) f 1−(y). (1.29)

For such function f , we shortly say f is log-convex.
It is said to be log-concave if the inequality in (1.29) is reversed.

Definition 1.7 A positive function f is said to be log-convex in the Jensen sense if for
each x,y ∈ I

f 2
(

x+ y
2

)
≤ f (x) f (y)

holds, i.e. if log f is convex in the Jensen sense.

As a consequence of results from Remark 1.2 (c) and Proposition 1.1 we get the fol-
lowing inequality for log-convex function:

[ f (b)]c−a ≤ [ f (a)]c−b [ f (c)]b−a. (1.30)
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Corollary 1.3 For a log-convex function f on interval I and p,q,r,s ∈ I such that
p ≤ r, q ≤ s, p �= q, r �= s, it holds

(
f (p)
f (q)

) 1
p−q

≤
(

f (r)
f (s)

) 1
r−s

. (1.31)

Inequality (1.31) is known as Galvani’s theorem for log-convex functions f : I → R.
At the end of this introductory section we overview one subclass of convex functions,

so-called s−convex functions (see [14]).

Definition 1.8 Let s be a real number, s ∈ (0,1]. A function f : [0,) → [0,) is said to
be s−convex if

f (x+(1−)y) ≤ s f (x)+ (1−)s f (y). (1.32)

for all x,y ∈ [0,) and  ∈ [0,1]

This class of function is recently even further refined (for details see [88]).

Definition 1.9 Let J be an open interval and h : J → R non-negative function, h �≡ 0. We
say that f : I → R is an h−convex function if f is non-negative and for all x,y ∈ I and
 ∈ (0,1) we have

f (x+(1−)y)≤ h() f (x)+h(1−) f (y). (1.33)

1.3 Exponentially convex functions

In this section we introduce definition of exponential convexity as given by Bernstein in
[12] (see also [7], [50], [51]). In this section I is an open interval in R.

Definition 1.10 A function h : I → R is said to be exponentially convex on I if it is
continuous and

n


i, j=1

i jh(xi + x j) ≥ 0

holds for every n ∈ N and all sequences (n)n∈N and (xn)n∈N of real numbers, such that
xi + x j ∈ I, 1 ≤ i, j ≤ n.
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The following Proposition follows directly from the previous Definition.

Proposition 1.2 For function h : I → R the following statements are equivalent:

(i) h is exponentially convex

(ii) h is continuous and
n


i, j=1

i jh

(
xi + x j

2

)
≥ 0, (1.34)

for all n ∈ N, all sequences (n)n∈N of real numbers, and all sequences (xn)n∈N
in I.

Note that for n = 1, it follows from (1.34) that exponentially convex function is non-
negative.

Directly from a definition of positive semi-definite matrix and inequality (1.34) we get
the following result.

Corollary 1.4 If h is exponentially convex on I, then the matrix[
h

(
xi + x j

2

)]n
i, j=1

is a positive semi-definite matrix. Specially,

det

[
h

(
xi + x j

2

)]n

i, j=1
≥ 0, (1.35)

for every n ∈ N and every choice xi ∈ I, i = 1, . . . ,n.

Remark 1.5 Note that for n = 2 from (1.35) we obtain

h(x1)h(x2)−h2
(

x1 + x2

2

)
≥ 0.

Hence, exponentially convex function is log-convex in the Jensen sense, and, being con-
tinuous, it is also log-convex function.

We continue with the definition of n-exponentially convex function.

Definition 1.11 A function h : I → R is n-exponentially convex in the Jensen sense on I
if

n


i, j=1

i jh

(
xi + x j

2

)
≥ 0

holds for all choices of i ∈ R and xi ∈ I, i = 1, . . . ,n.

A function h : I → R is n-exponentially convex on I if it is n-exponentially convex in
the Jensen sense and continuous on I.
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Remark 1.6 It is clear from the definition that 1-exponentially convex functions in the
Jensen sense are nonnegative functions.

Also, n-exponentially convex functions in the Jensen sense are k-exponentially convex
in the Jensen sense for every k ≤ n, k ∈ N.

A function h : I →R is exponentially convex in the Jensen sense on I if it is n−exponentially
convex in the Jensen sense for all n ∈ N.

One of the most important properties of exponentially convex functions is their integral
representation.

Theorem 1.21 The function  : I → R is exponentially convex on I if and only if

(x) =
∫

−
etxd(t), x ∈ I

for some non-decreasing function  : R → R.

Proof. See [7, p. 211]. �

Remark 1.7 A function  : I → R is log-convex in the Jensen sense, i.e.


(

x+ y
2

)2

≤ (x)(y), for all x,y ∈ I, (1.36)

if and only if

2(x)+2
(

x+ y
2

)
+ 2(y) ≥ 0

holds for every , ∈ R and x,y ∈ I, i.e., if and only if  is 2-exponentially convex in the
Jensen sense. By induction from (1.36) we have


(

1
2k x+

(
1− 1

2k

)
y

)
≤ (x)

1
2k (y)1− 1

2k .

Therefore, if  is continuous and (x) = 0 for some x ∈ I, then from the last inequality
and nonnegativity of  (see Remark 1.6) we get

(y) = lim
k→


(

1
2k x+

(
1− 1

2k

)
y

)
= 0 for all y ∈ I.

Hence, 2-exponentially convex function is either identically equal to zero or it is strictly
positive and log-convex.
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1.4 Functions convex at point c

In this section we introduce definition of a class of functions that extends the class of
convex functions as given by Pečarić and Smoljak in [75]

Definition 1.12 Let f : [a,b] → R be a function and c ∈ (a,b). We say that f belongs
to class M c

1 [a,b] ( f belongs to class M c
2 [a,b]) if there exists a constant A such that the

function F(x) = f (x)−Ax is nonincreasing (nondecreasing) on [a,c] and nondecreasing
(nonincreasing) on [c,b].

If f ∈ M c
1 [a,b] or f ∈ M c

2 [a,b] and f ′(c) exists, then f ′(c) = A.
Let us show this for f ∈ M c

1 [a,b]. Since F is nonincreasing on [a,c] and nondecreasing on
[c,b] for any distinct points x1,x2 ∈ [a,c] and y1,y2 ∈ [c,b] we have

[x1,x2;F ] = [x1,x2; f ]−A ≤ 0 ≤ [y1,y2; f ]−A = [y1,y2;F ].

Therefore, since f ′−(c) and f ′+(c) exist, letting x1 = y1 = c, x2 ↗ c and y2 ↘ c we get

f ′−(c) ≤ A ≤ f ′+(c). (1.37)

Remark 1.8 We mention here that Florea and Păltănea recently introduced (see [21]) the
following more general definition of the convexity of a function f : [a,b] → R at a point
c ∈ (a,b):

f (c)+ f (x+ y− c)≤ f (x)+ f (y),

for all x,y ∈ [a,b] such that x ≤ c ≤ y. This property is denoted by f ∈ Convc([a,b]).
We can easily state that M c

1 [a,b] ⊂ Convc([a,b]), but the two classes of punctual convex
functions are not equal. For example, consider the function

f (x) =

{
|x|, x ∈ [−1,1];
2−|x|, x ∈ [−2,2]\ [−1,1].

We have f ∈ Conv0([−2,2]) (see Example 2 in [21]). On the other hand, clearly
f /∈ M 0

1 [−2,2].

In the following lemma and theorem we give a connection between the class of func-
tions M c

1 [a,b] and the class of convex functions which was obtained in [75].

Lemma 1.1 If f : [a,b] → R is convex (concave), then f ∈ M c
1 [a,b] ( f ∈ M c

2 [a,b]) for
every c ∈ (a,b).

Proof. If f is convex, then f ′− and f ′+ exist (see [71]). Hence, for every x1,x2 ∈ [a,c] and
y1,y2 ∈ [c,b] it holds

f (x2)− f (x1)
x2− x1

≤ f ′−(c) ≤ f ′+(c) ≤ f (y2)− f (y1)
y2− y1

.


