
Chapter1
Introduction

In this chapter, a brief review of some fundamental results on the topics in the sequel is
given and a several basic motivating ideas are presented.

1.1 Convex Functions

Definition 1.1 Let I be an real interval. Then  : I → R is said to be convex function on
I if for all x,y ∈ I and every  ∈ [0,1], we have

 ((1− )x+y)≤ (1− )(x)+(y). (1.1)

If (1.1) is strict for all x,y ∈ I, x �= y and every  ∈ (0,1), then  is said to be strictly
convex.
If in (1.1) the reverse inequality holds, then  is said to be concave function. If it is strict
for all x,y ∈ I, x �= y and every  ∈ (0,1), then  is said to be strictly concave.

For convex functions the following propositions are valid which exactly define convex
functions on equivalent ways.

Remark 1.1 a) The inequality (1.1), for x1,x2,x3 ∈ I, such that x1 ≤ x2 ≤ x3, x1 �= x3, we
can write in the form

 (x2) ≤ x3− x2

x3− x1
 (x1)+

x2 − x1

x3 − x1
 (x3) , (1.2)
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2 1 INTRODUCTION

i.e.
(x3− x2) (x1)+ (x1 − x3) (x2)+ (x2− x1) (x3) ≥ 0, (1.3)

setting x = x1, y = x3,  = (x2 − x1)/(x3− x1) . This inequality is often used as alternative
definition of convexity.
b) Another way of writing (1.3) is

 (x2)− (x1)
x2− x1

≤  (y2)− (y1)
y2− y1

, (1.4)

where x1 ≤ y1, x2 ≤ y2, x1 �= x2 and y1 �= y2.

The following two theorems concern derivatives of convex functions.

Theorem 1.1 (see [144, p. 4]) Let I be an real interval. Let  : I → R be convex. Then

(i)  is Lipschitz on any closed interval in I;

(ii)  ′− and  ′
+ exist and are increasing on I, and  ′− ≤  ′

+ (if  is strictly convex, then
these derivatives are strictly increasing);

(iii)  ′ exists, except possibly on a countable set, and on the complement of which it is
continuous.

Remark 1.2 a) If  : I → R is derivable function, then  is convex iff a function  ′ is
increasing.
b) If  : I → R is twice derivable function, then  is convex iff  ′′(x) ≥ 0 for all x ∈ I. If
 ′′(x) > 0, then  is strictly convex.

Theorem 1.2 (see [144, p. 5]) Let I be an open interval in R.

(i)  : I → R is convex iff there is at least one line of support for  at each x0 ∈ I, i.e.
for all x ∈ I we have

 (x) ≥  (x0)+ (x− x0) ,

where  ∈ R depends on x0 and is given by  =  ′ (x0) when  ′ (x0) exists, and
 ∈ [

 ′− (x0) , ′
+ (x0)

]
when  ′− (x0) �=  ′

+ (x0) .

(ii)  : I → R is convex if the function x 	−→  (x)− (x0)− (x− x0) , (the difference
between the function and its support) is decreasing for x < x0 and increasing for
x > x0.

Definition 1.2 Let  : I → R be a convex function. Then the subdifferential of  at x,
denoted by (x) is defined by

(x) = { ∈ R :  (y)−(x)− (y− x)≥ 0, y ∈ I}.
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1.1 CONVEX FUNCTIONS 3

There is a connection between a convex function and its subdifferential. It is well-
known that (x) �= 0 for all x ∈ IntI. More precisely, at each point x ∈ IntI we have
−<  ′−(x) ≤  ′

+(x) <  and

(x) ∈ [
 ′
− (x0) , ′

+ (x0)
]
,

while the set on which  is not differentiable is at most countable. Moreover, each function
 : I → R such that (x) ∈ (x), whenever x ∈ IntI, is increasing on IntI. For any such
function  and arbitrary x ∈ IntI, y ∈ I, we have

 (y)−(x)−(x)(y− x)≥ 0

and

 (y)−(x)−(x)(y− x) = | (y)−(x)−(x)(y− x) |
≥ ‖ (y)−(x)|− |(x)| · |(y− x)‖ .

J. L. Jensen is considered generally as being the first mathematician whostudied con-
vex functions in a systematic way. He defined the concept of convex functions using the
inequality (1.5) that are listed in the following definition.

Definition 1.3 A function  : I →R is called Jensen-convex or J-convex if for all x,y∈ I
we have


(

x+ y
2

)
≤ (x)+(y)

2
. (1.5)

Remark 1.3 It can be easily proved that a convex function is J-convex. If  : I → R is
continuos function, then  is convex iff it is J-convex.

Inequality (1.1) can be extended to the convex combinations of finitely many points in
I by mathematical induction. These extensions are known as discrete Jensen’s inequality.

Theorem 1.3 (JENSEN’S INEQUALITY) Let I be an interval in R and f : I → R be a
convex function. Let n ≥ 2, x = (x1, . . . ,xn) ∈ In and w = (w1, . . . ,wn) be a positive n-
tuple. Then

f

(
1

Wn

n


i=1

wixi

)
≤ 1

Wn

n


i=1

wi f (xi), (1.6)

where

Wk =
k


i=1

wi, k = 1, . . . ,n. (1.7)

If f is strictly convex, then inequality (1.6) is strict unless x1 = · · · = xn.

The condition “w is a positive n-tuple” can be replaced by “w is a non-negative n-tuple
and Wn > 0”. Note that the Jensen inequality (1.6) can be used as an alternative definition
of convexity.

It is reasonable to ask whether the condition “w is a non-negative n-tuple” can be re-
laxed at the expense of restricting x more severely. An answer to this question was given
by Steffensen [161] (see also [144, p.57]).
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4 1 INTRODUCTION

Theorem 1.4 (THE JENSEN-STEFFENSEN INEQUALITY) Let I be an interval in R and
f : I → R be a convex function. If
x = (x1, . . . ,xn) ∈ In is a monotonic n-tuple and w = (w1, . . . ,wn) a real n-tuple such that

0 ≤Wk ≤Wn , k = 1, . . . ,n−1, Wn > 0, (1.8)

is satisfied, whereWk are as in (1.7), then (1.6) holds. If f is strictly convex, then inequality
(1.6) is strict unless x1 = · · · = xn.

Inequality (1.6) under conditions from Theorem 1.4 is called the Jensen-Steffensen
inequality.

1.2 Space of Integrable, Continuous and Absolutely
Continuous Functions

Let [a,b] be a finite interval in R, where−≤ a< b≤. We denote by Lp[a,b], 1≤ p <,

the space of all Lebesgue measurable functions f for which
∫ b
a | f (t)|pdt < , where

‖ f‖p =
(∫ b

a
| f (t)|pdt

) 1
p

,

and by L[a,b] the set of all functions measurable and essentially bounded on [a,b] with

‖ f‖ = esssup{| f (x) : x ∈ [a,b]}.
Theorem 1.5 (HOLDER’S INEQUALITY) Let p,q ∈ R be such that
1 ≤ p,q ≤  and 1

p + 1
q = 1. Let f ,g : [a,b] → R be integrable functions such that f ∈

Lp[a,b] and g ∈ Lq[a,b]. Then∫ b

a
| f (t)g(t)|dt ≤ ‖ f‖p ‖g‖q . (1.9)

The equality in (1.9) holds iff A| f (t)|p = B|g(t)|q almost everywhere (shortened to a.e.),
where A and B are constants.

We denote by Cn([a,b]),n ∈ N0, the space of functions which are n times continuously
differentiable on [a,b], that is

Cn([a,b]) =
{

f : [a,b] → R : f (k) ∈C([a,b]),k = 0,1, . . . ,n
}

.

In particular, C0([a,b]) = C([a,b]) is the space of continuous functions on [a,b] with the
norm

‖ f‖Cn =
n


k=0

∥∥∥ f (k)
∥∥∥

C
=

n


k=0

max
x∈[a,b]

∣∣∣ f (k)(x)
∣∣∣ ,
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1.2 SPACE OF INTEGRABLE, CONTINUOUS AND ABSOLUTELY... 5

and for C([a,b])
‖ f‖C = max

x∈[a,b]
| f (x)| .

Lemma 1.1 The space Cn([a,b]) consists of those and only those functions f which are
represented in the form

f (x) =
1

(n−1)!

∫ x

a
(x− t)n−1(t)dt +

n−1


k=0

ck(x−a)k, (1.10)

where  ∈C([a,b]) and ck are arbitrary constants (k = 0,1, . . . ,n−1).
Moreover,

(t) = f (n)(t), ck =
f (k)(a)

k!
(k = 0,1, . . . ,n−1). (1.11)

The space of absolutely continuous functions on an interval [a,b] is denote by AC([a,b]).
It is known that AC([a,b]) coincides with the space of primitives of Lebesgue integrable
functions L1[a,b] (see [100]):

f ∈ AC([a,b]) ⇔ f (x) = f (a)+
∫ x

a
(t)dt,  ∈ L1[a,b].

Therefore, an absolutely continuous function f has an integrable derivatives f ′(x) = (x)
almost everywhere on [a,b]. We denote by ACn([a,b]),n ∈ N, the space

ACn([a,b]) = { f ∈Cn−1([a,b]) : f (n−1) ∈ AC([a,b])}.
In particular, AC1([a,b]) = AC([a,b]).

Lemma 1.2 The space ACn([a,b]) consists of those and only those functions which can be
represented in the form (1.10), where  ∈ L1[a,b] and ck are arbitrary (k = 0,1, ..,n−1).
Moreover, (1.11) holds.

The next theorem has numerous applications involving multiple integrals.

Theorem 1.6 (FUBINI’S THEOREM) Let (X ,M ,) and (Y,N ,) be  -finite measure
space and f be ×-measurable function on X ×Y. If f ≥ 0, then the next integrals are
equal∫

X×Y
f (x,y)d(×)(x,y),

∫
X

(∫
Y

f (x,y)d(y)
)

d(x),
∫
Y

(∫
X

f (x,y)d(x)
)

d(y).

Remark 1.4 The next equalities∫ b

a

(∫ d

c
f (x,y)dy

)
dx =

∫ d

c

(∫ b

a
f (x,y)dx

)
dy,∫ b

a

(∫ x

c
f (x,y)dy

)
dx =

∫ b

a

(∫ b

y
f (x,y)dx

)
dy,

are consequences of the previous theorem.
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6 1 INTRODUCTION

Theorem 1.7 (INTEGRAL JENSEN’S INEQUALITY) Let (,A ,) be a measure space
with 0 < () < and let  :→ R be -integrable function. Let f : I → R be a convex
function such that Im ⊆ I anf f ◦ is a  – integrable function. Then

f

(
1

()

∫

(x)d(x)

)
≤ 1

()

∫


f ((x))d(x). (1.12)

If f is strictly convex, then (1.12) becomes equality iff  is a constant -almost everywhere
on . If f is concave, then (1.12) is reversed.

Remark 1.5 The discrete Jensen inequality (1.6) is obtained by means of the discrete
measure  on = {1, . . . ,n}, with ({i}) = pi and (i) = xi.

Another integral version of jensen’s inequality is based on the notation of the Riemann-
Stieltjes integral for which a brief outline is given here. One can find more information on
the Riemann-Stieltjes integral in [153].

Let [a,b] ⊂ R and let f , : [a,b] → R be bounded functions. The each decomposition
D = {t0,t1, . . . ,tn} of [a,b], such that t0 < t1 < · · · < tn−1 < tn, Stieltjes’ integral sum

( f , ;D,1, . . . ,n) =
n


i=1

f (i)((ti)−(ti−1))

is assigned, where i ∈ [ti−1,ti], i = 1, . . . ,n. These sums will be denoted with ( f , ;D)
in the sequel.

Definition 1.4 Let f , : [a,b] → R be bounded functions. A function f is said to be
Riemann-Stieltjes integrable regardung a function  if there exists I f ∈ R such that for
every  > 0 there exists a decomposition D0 of [a,b] such that for every decomposition
D ⊇ D0 of [a,b] anf for every sum ( f , ;D)

|( f , ;D)− I f | < 

holds. The unuque If is the Riemann-Stieltjes integral of the function F regarding the
function  and is denoted with ∫ b

a
f (t)d(t).

The Riemann-Stieltjes integral is a generalization of the Riemann integral and coin-
cides with it when  is an identity.

The notation of the Riemann-Stieltjes integral is narrowly related to the class of the
function of bounded variation.

Definition 1.5 Let  : [a,b] → R be a real function. To each decomposition D = {t0,t1,
. . . ,tn} of [a,b], such that a = t0 < t1 < · · · < tn−1 < tn = b, belongs the sum

V ( ;D) =
n


i=1

|(ti)−(ti−1)|,
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1.3 SPACE OF INTEGRABLE, CONTINUOUS AND ABSOLUTELY... 7

which is said to be a variation of the function  regarding decomposition D.
A function  is said to be a function of bounded variation if the set {V ( ;D) : D ∈ D} is
bounded, where D is a family of all decompositions of the interval [a,b]. Number

V () = sup{V( ;D) : D ∈ D}
is called a total variation of a function  .

Theorem 1.8 The following assertions hold:

(i) Every monotonic function  : [a,b] → R is a function of bounded variation on [a,b]
and V () = |(b)−(a)|;

(ii) Every function of bounded variation is a bounded function;

(iii) If f and g are functions of bounded variation on [a,b], then f + g is a function of
bounded variation on [a,b].

Theorem 1.9 Let  be a function of bounded variation on [a,b]. then:

(i)  has at most countably many of step discontinuities on [a,b];

(ii)  can be presented as  = s +g, where step function s and continuous function g
are both functions of bounded variation on [a,b].

At the end of this section, we introduce two recently obtained results involving Čebyšev’s
functional that involve the Grüss and Ostrowski type inequalities.

Definition 1.6 For two Lebesgue integrable functions f ,g : [, ]→R, we define Čebyšev’s
functional as

T ( f ,g) :=
1

 −

∫


f (t)g(t)dt− 1
 −

∫


f (t)dt · 1
 −

∫


g(t)dt.

Theorem 1.10 [57, Theorem 1] Let f : [, ] → R be Lebesgue integrable and
g : [, ] → R be absolutely continuous with (·−)( −·)(g′)2 ∈ L1[, ]. Then

|T ( f ,g)| ≤ 1√
2
[T ( f , f )]

1
2

1√
 −

(∫ 


(x−)( − x)[g′(x)]2dx

) 1
2

. (1.13)

The constant 1√
2

in (1.13) is the best possible.

Theorem 1.11 [57, Theorem 2] Let g : [, ] → R be monotonic nondecreasing and
f : [, ] → R be absolutely continuous with f ′ ∈ L[, ]. Then

|T ( f ,g)| ≤ 1
2( −)

∥∥ f ′
∥∥


∫ 


(x−)( − x)dg(x). (1.14)

The constant 1
2 in (1.14) is the best possible.
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8 1 INTRODUCTION

1.3 About Majorization

In this section, we introduce the concepts of majorization and Schur-convexity in order to
give some basic results from the theory of majorization that give an important character-
ization of convex functions. Majorization theorem for convex functions and the classical
concept of majorization, due to Hardy et al. [79], have numerous applications in different
fields of applied sciences (see the monograph [117]). In recent times, majorization type
results has attracted the interest of several mathematicians which resulting with interesting
generalizations and applications (see for example [4], [6], [5], [52], [137]-[136]). A com-
plete and superb reference on the subject is the book by Marshall and Olkin [123]. The
book by Bhatia (1997) [45] contains significant material on majorization theory as well.
Other textbooks on matrix and multivariate analysis also include a section on majoriztion
theory, e.g., [82, Sec.4.3], [24, Sec.8.10] and [144].

Majorization makes precise the vague notion that the components of a vector y are “less
spread out” or “more nearly equal” than the components of a vector x.
For fixed n ≥ 2, let

x = (x1, . . . ,xn) , y = (y1, . . . ,yn)

denote two n-tuples. Let

x[1] ≥ x[2] ≥ . . . ≥ x[n], y[1] ≥ y[2] ≥ . . . ≥ y[n],

x(1) ≤ x(2) ≤ . . . ≤ x(n), y(1) ≤ y(2) ≤ . . . ≤ y(n)

be their ordered components.

Definition 1.7 Majorization: (see [144, p.319]) x is said to majorize y (or y is said to
be majorized by x), in symbol, x � y, if

m


i=1

y[i] ≤
m


i=1

x[i] (1.15)

holds for m = 1,2, . . . ,n−1 and
n


i=1

yi =
n


i=1

xi.

Note that (1.15) is equivalent to

n


i=n−m+1

y(i) ≤
n


i=n−m+1

x(i)

holds for m = 1,2, . . . ,n−1.

The following notion of Schur-convexity generalizes the definition of convex function
via the notion of majorization.
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1.3 ABOUT MAJORIZATION 9

Definition 1.8 Schur-convexity: A function F : S ⊆ Rm → R is called Schur-convex on
S if

F(y) ≤ F(x) (1.16)

for every x, y ∈ S such that
y ≺ x.

Definition 1.9 (Weakly Majorization): For any two vectors x,y∈ Rn, we say y is weakly
majorized by x or x weakly majorizes y (denoted by x w � y or x �w y) if

m


i=1

y(i) ≥
m


i=1

x(i)

holds for m = 1,2, . . . ,n−1,n, or, equivalently,

n


i=m

y[i] ≥
n


i=m

x[i]

holds for m = 1,2, . . . ,n−1,n.

Note that x � y implies x w � y; in other words, majorization is a more restrictive
definition than weakly majorization.
Observe that the original order of the elements of x and y plays no role in the definition of
majorization. In other words,

x ≺x

for all permutation matrices .

Parallel to the concept of additive majorization is the notion of multiplicative majoriza-
tion (also termed log-majorization).

Definition 1.10 (Multiplicative Majorization): [139] Let x, y be two positive n-tuples,
y is said to be multiplicatively majorized by x, denoted by y ≺× x if

m


i=1

y[i] ≤
m


i=1

x[i] (1.17)

holds for m = 1,2, . . . ,n−1 and
n


i=1

yi =
n


i=1

xi.

Note that (1.17) is equivalent to

n


i=n−m+1

y(i) ≤
n


i=n−m+1

x(i)

holds for m = 1,2, . . . ,n−1.
To differentiate the two types of majorization, we sometimes use the symbol ≺+ rather
than ≺ to denote (additive) majorization.
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10 1 INTRODUCTION

There are several equivalent characterizations of the majorization relation x � y in
addition to the conditions given in definition of majorization. One is actually the answer
of a question posed and answered in 1929 by Hardy, Littlewood and Polya [80, 79] in
the form of the following theorem well-known as Majorization theorem (see [123, p.11],
[144, p.320]).

Theorem 1.12 (MAJORIZATION THEOREM) Let I be an interval in R, and let x, y be
two n-tuples such that xi, yi ∈ I (i = 1, . . . ,n). Then

n


i=1

 (yi) ≤
n


i=1

 (xi) (1.18)

holds for every continuous convex function  : I → R if and only if x � y.
If  is a strictly convex function, then equality in (1.18) is valid iff x[i] = y[i], i = 1, . . . ,n.

Another interesting characterization of x � y, also by Hardy, Littlewood, and Polya
[80, 79], is that y = Px for some double stochastic matrix P. In fact, the previous charac-
terization implies that the set of vectors y that satisfy x � y is the convex hull spanned by
the n! points formed from the permutations of the elements of y.

The previous Majorization theorem can be be slightly preformulate in the following
form which gives a relation between one-dimensional convex function and m-dimensional
Schur-convex function (see [144, p. 333]).

Theorem 1.13 Let I ⊂ R be an interval and x = (x1, . . . ,xm), y = (y1, . . . ,ym) ∈ Im. Let
 : I → R be continuous function. Then a function F : Im → R, defined by

F(x) =
m


i=1

(xi),

is Schur-convex on Im iff  is convex on I.

The following theorem can be regarded as a weighted version of Theorem 1.13 and is
proved by Fuchs in ([74], [144, p.323]).

Theorem 1.14 (FUCHS’S THEOREM) Let x, y be two decreasing real n-tuples, x, y ∈ In,
and w = (w1,w2, . . . ,wn) be a real n-tuple such that

k


i=1

wi yi ≤
k


i=1

wi xi for k = 1, . . . ,n−1, (1.19)

and
n


i=1

wi yi =
n


i=1

wi xi. (1.20)

Then for every continuous convex function  : I → R, we have

n


i=1

wi  (yi) ≤
n


i=1

wi  (xi) . (1.21)

ele
men

t.h
r



1.3 ABOUT MAJORIZATION 11

Remark 1.6 Throughout this book, if in some results we have x = (x1,x2, . . . ,xt),
y = (y1,y2, . . . ,yt) and w = (w1,w2, . . . ,wt ) are t-tuples and g is associated function and
we say that that these tuples are satisfying conditions (1.19), (1.20) and (1.21) holds, then
we take n = t and  = g in (1.19), (1.20) and (1.21).

The following theorem is valid ([133, p.32]):

Theorem 1.15 ([108]) Let  : I → R be a continuous convex function on an interval I,
w be a positive n-tuple and x, y ∈ In such that satisfying (1.19) and (1.20)

(i) If y is decreasing n-tuple, then (1.21) holds.

(ii) If x is increasing n-tuple, then reverse inequality in (1.21) holds.

If  is strictly convex and x �= y, then (1.21) and reverse inequality in (1.21) are strict.

Proof. As in [161] (see [133, p.32]), because of the convexity of 

(u) − (v) ≥  ′
+ (v) (u − v) .

Hence,

n


i=1

wi [ (xi) −  (yi)]

≥
n


i=1

wi  ′
+ (yi) (xi − yi)

=  ′
+ (yn) (Xn − Yn)

+
n−1


k=1

(Xk − Yk)
[
 ′

+ (yk) −  ′
+ (yk+1)

] ≥ 0. (1.22)

where Xk = k
i=1 wi xi and Yk = k

i=1 wi yi.
The last inequality follows from (1.19) and (1.20), y is decreasing and the convexity of  .
Similarly, we can prove the case when x is increasing.
If  is strictly convex and x �= y, then

 (xi) −  (yi) >  ′
+ (yi) (xi − yi) ,

for at least one i = 1, . . . ,n. Which gives strict inequality in (1.21) and reverse inequality
in (1.21). �

The following theorem is a slight extension of Theorem 1.14 proved by J. Pečarić and
S. Abramovich [161].

Theorem 1.16 ([108]) Let w, x and y be an positive n-tuples. Suppose , : [0,)→R

are such that  is a strictly increasing function and  is a convex function with respect to
 i.e.,  ◦−1 is convex. Also suppose that

k


i=1

wi (yi) ≤
k


i=1

wi (xi) , k = 1, . . . , n−1, (1.23)
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12 1 INTRODUCTION

and
n


i=1

wi (yi) =
n


i=1

wi (xi) . (1.24)

(i) If y is a decreasing n-tuple, then (1.21) holds.

(ii) If x is an increasing n-tuple, then the reverse inequality in (1.21) holds.

If  ◦−1 is strictly convex and x �=y, then the strictly inequality holds in (1.21).

Definition 1.11 (Integral majorization) Let x, y be real valued functions defined on an
interval [a,b] such that

∫ s
a x()d ,

∫ s
a y()d both exist for all s ∈ [a,b]. [144, p.324] x()

is said to majorize y(), in symbol, x() � y(), for  ∈ [a,b] if they are decreasing in
 ∈ [a,b] and ∫ s

a
y()d ≤

∫ s

a
x()d f or s ∈ [a,b], (1.25)

and equality in (1.25) holds for s = b.

The following theorem can be regarded as integral majorization theorem [144, p.325].

Theorem 1.17 (INTEGRAL MAJORIZATION THEOREM) x()� y() for  ∈ [a,b] iff they
are decreasing in [a,b] and∫ b

a
 (y()) d ≤

∫ b

a
 (x()) d (1.26)

holds for every  that is continuous and convex in [a,b] such that the integrals exist.

The following theorem is a simple consequence of Theorem 1 in [140] (see also [144,
p.328]):

Theorem 1.18 Let x(), y() : [a,b] → R, x() and y() are continuous and increasing
and let  : [a,b] → R be a function of bounded variation.

(a) If ∫ b


y()d() ≤

∫ b


x()d() for every  ∈ [a,b], (1.27)

and ∫ b

a
y()d() =

∫ b

a
x()d() (1.28)

hold, then for every continuous convex function  , we have∫ b

a
 (y()) d() ≤

∫ b

a
 (x()) d(). (1.29)
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(b) If (1.27) holds, then (1.29) holds for every continuous increasing convex function  .

Definition 1.12 Let F(), G() be two continuous and increasing functions for  ≥ 0
such that F(0) = G(0) = 0 and define

F() = 1−F(), G() = 1−G() f or  ≥ 0. (1.30)

(cf.[144], p.330) F() is said to majorize G(), in symbol, F()� G(), for  ∈ [0,+) if∫ s

0
G()d ≤

∫ s

0
F()d forall s > 0,

and ∫ 

0
G()d =

∫ 

0
F()d < .

The following result was obtained by Boland and Proschan (1986) [47] (see [144],
p.331):

Theorem 1.19 F() � G() for  ∈ [0,+) holds iff∫ 

0
()dF() ≤

∫ 

0
()dG() (1.31)

holds for all convex functions  , provided the integrals are finite.

The following theorem is a slight extension of Lemma 2 in [120] which is proved by
L. Maligranda, J. Pečarić, L. E. Persson (1995):

Theorem 1.20 ([109]) Let w, x and y be positive functions on [a,b]. Suppose that  :
[0,) → R is a convex function and that∫ 

a
y(t)w(t)dt ≤

∫ 

a
x(t)w(t)dt,  ∈ [a,b] and

∫ b

a
y(t)w(t)dt =

∫ b

a
x(t)w(t)dt.

(i) If y is a decreasing function on [a,b], then∫ b

a
 (y(t)) w(t)dt ≤

∫ b

a
 (x(t)) w(t)dt. (1.32)

(i) If x is an increasing function on [a,b], then∫ b

a
 (x(t)) w(t)dt ≤

∫ b

a
 (y(t)) w(t)dt. (1.33)

If  is strictly convex function and x �= y (a.e.), then (1.32) and (1.33) are strict.
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Proof. As in [120], if we prove the inequalities for  ∈ C1[0,), then the general case
follows from the pointwise approximation of  by smooth convex functions.
Since  is a convex function on [0,), it follows that

 (u1) −  (u2) ≥  ′ (u2) (u1 − u2) .

If we set
F() =

∫ 

a
[x(t) − y(t)] w(t)dt,

then F() ≥ 0,  ∈ [a,b], and F(a) = F(b) = 0.
Then ∫ b

a
[ [x(t)] −  [y(t)]] w(t)dt

≥
∫ b

a
 ′ [y(t)] [x(t) − y(t)] w(t)dt

=
∫ b

a
 ′ [y(t)] dF(t)

=
[
 ′ [y(t)] F(t)

]b
a −

∫ b

a
F(t)d

[
 ′ [y(t)]

]
= −

∫ b

a
F(t) ′′ [y(t)] f ′(t)dt ≥ 0.

The last inequality follows from the convexity of  and y being decreasing.
Similarly, we can prove the case when x is increasing.
If  is strictly convex function and x �= y (a.e.), then

 [x(t)] −  [y(t)] >  ′ [y(t)] [x(t) − y(t)] (a. e.).

Which gives strict inequality in (1.32) and (1.33). �

The following theorem (see [109]) is a slight extension of Theorem 2 in [161] which is
proved by J. Pečarić and S. Abramovich (1997):

Theorem 1.21 ([109]) Let w be a weight function on [a,b] and let x and y be positive
functions on [a,b]. Suppose  ,  : [0,) → R are such that  is a strictly increasing
function and  is a convex function with respect to  i.e.,  ◦−1 is convex. Suppose also
that ∫ 

a
 (y(t)) w(t)dt ≤

∫ 

a
 (x(t)) w(t)dt,  ∈ [a,b] (1.34)

and ∫ b

a
 (y(t)) w(t)dt =

∫ b

a
 (x(t)) w(t)dt. (1.35)

(i) If y is a decreasing function on [a,b], then (1.32) holds.

(ii) If x is an increasing function on [a,b], then (1.33) holds.

If  ◦−1 is strictly convex function and x �= y (a.e.), then the strict inequality holds in
(1.32) and (1.33).
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1.4 Mean Value Theorems

A mean on In, where I ⊆ R is an interval, is every function M : In → R, with property

min{x1,x2, . . . ,xn} ≤ M(x1,x2, . . . ,xn) ≤ max{x1,x2, . . . ,xn}
that holds for every choice of all x1, . . . ,xn ∈ I. For mean M we said that is symmet-
ric if for every permutation  : {1,2, . . . ,n} → {1,2, . . . ,n} we have M(x1,x2, . . . ,xn) =
M(x(1),x(2), . . . ,x(n)).

As examples, we present classes of means that follows from the well-known mean
value theorems.

Theorem 1.22 (LAGRANGE’S MEAN VALUE THEOREM) If a function  : [x,y] → R is
continuous on a closed interval [x,y] and differentiable on the open interval (x,y), then
there is at least one point  ∈ (x,y) such that

 ′( ) =
(y)−(x)

y− x
.

Under assumption that a function  ′ is invertible, from Lagrange’s theorem it follows
that there is a unique number

 =
(
 ′)−1

(
(y)−(x)

y− x

)
which we called Lagrange’s mean of [x,y].

Lagrange’s mean we can generalize using Cauchy’s mean value theorem.

Theorem 1.23 (CAUCHY’S MEAN VALUE THEOREM) Let functions  , : [x,y]→R be
continuous on an interval [x,y] and differentiable on (x,y) and let ′(t) �= 0 for all t ∈ (x,y).
Then there is a point  ∈ (x,y) such that

 ′( )
 ′( )

=
(y)−(x)
(y)−(x)

.

Under assumption that a function  ′
 ′ is invertible, from Cauchy’s theorem it follows

that there is a unique number

 =
(
 ′

 ′

)−1( (y)−(x)
(y)−(x)

)
.

which we called Cauchy’s mean of interval [x,y]. Continuous expansion gives  = x if
y = x.

Remark 1.7 If we take (x) = x, as a special case of Cauchy’s mean we get Lagrange’s
mean. Moreover, many well known means in mathematics we can get as special cases
of Cauchy’s mean. Under assumption that x,y ∈ (0,) and choosing (x) = xv and
(x) = xu, u,v ∈ R, u �= v, u,v �= 0, we obtain two-parameter mean
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