Pseudo-random numbers

To simulate arandom variable meansto construct its numerical sample of an arbitrary large
length. The basic idea is to represent the random variable in terms of one or more inde-
pendent, uniformly distributed random variables. A random variable which is uniformly
distributedin [0, 1] is called the random number. Therefore, the construction of anumerical
sample of the original random variable is transformed to a generation of a sample of ran-
dom numbers. In thisway the random number has an exclusiveimportancein simulations.
Thefirst chapter is devoted to a study of theoretical background of simulations of random
numbers and to testing quality of simulated sequences.

1.1. Random number and Monte Carlo simulation

For Monte Carlo simulations of random variables the central role is held by the random
variablewhich isuniformly distributed in theinterval [0, 1]. Because of thissignificant role
this random variable is called random number and it is denoted by y. The distribution of
random number is defined by the function:

F(x) = x for xe]0,1),

1 for xe[l,0),

{ 0 for xé& (—,0),

and itsgraphisillustrated in Figure 1.1.
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Distribution of random number

Figure 1.1.

The essence of Monte Carlo method can be explained by an example. Let us assume
that a random variable is defined by & = g(y), where g is a function mapping the interval
[0,1] into real numbers (including +<°). For instance, the function:

B —Inx for xe(0,1],
g(x){ o for x =0,

has such properties. Our aim is to generate a sequence of numbers yy,y>, ..., which has the
same properties as independent outcomes of the variable £. For this purpose a sequence of
independent outcomes {Bx : k =1,2,...} of the random number y must be available. This
is a sequence of numbers with values in the interval [0,1]. Then the sequence of numbers
{yk : k=1,2,...}, where yx = g(B«), defines a sequence of independent outcomes of &.
This simple numerical procedure is called a Monte Carlo simulation of random variable &.
It can be split methodologically into three entities. These entities are called tasks.

S1) A random variable £ is defined by its distribution x — Fz(x). The first task of
simulation is to find out a function g on [0, 1] such that

& =9 (1.1)

S2) The second task of simulation is the generation of a sequence {fx :k=1,2,...} C
[0,1] which must have properties as a sequence of independent outcomes of the random
number y. Then the sequence of numbers yx = g(Px) has properties as a sequence of
independent outcomes of the random variable &.

S3) The third task is an analysis of the quality of simulation by using statistical tests.

The procedure defined by Tasks S1) - S3) is called the Monte Carlo simulation of
a random variable £. If the objects of simulations (such as random variables) are not
specified in advance we prefer to use the terminology Monte Carlo method.

The described procedure can be easily generalized to the cases in which the random
variable & is represented by a sequence of independent random numbers,

m :gO(VO); é = gm(YhVwaVm), (12)

where the function go maps the interval [0, 1] into natural numbers N, while the functions
gm map [0,1]™ into R. However, the idea of simulation is unchanged. In Task S1) one has
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to use (1.2) instead of (1.1) and in Task S2) the function g(-) must be replaced by pairs
9o(+),9m(--+).

The first of defined tasks, i.e. the search for a function g of (1.1) or (1.2), is a genuine
mathematical problem. The greatest part of analysis in this book is devoted to this problem.
The second task is related directly to the stochastic experiment or outcomes. Schematically,
this problem is illustrated by the following chart:

stochastic experiment {B« : ke N}

By the very nature of random variable the stochastic experiment is not numerically real-
izable by mathematical algorithms. Therefore the mathematical procedure defined by this
chart is often replaced by another one,

measuring equipment
& digitalization {B« : ke N}
method

which can be materialized. Such procedures are often used and finite sequences of numbers
By are generated and saved in the form of tables or recorded on electronic carriers. Let us
point out that this procedure is not mathematical because its essential part depends on
objects of our material world.

We know that a sequence { S« : k =1,2,...} must have certain statistical properties im-
plied by the characteristics of random number. Properties are verified by statistical tests.
This fact gives us an opportunity to make an essential step towards generalizations. Our
interest is not the origin of a sequence {fx : k= 1,2,...}. Our interest are statistical prop-
erties of this sequence which can be verified by using statistical tests. Hence, sequences
generated by mathematical algorithms are also acceptable if they have the same proper-
ties as sequences of independent outcomes of random number. A tremendous advantage
of such possibility is obvious since in a process of simulation we do not leave objects of
mathematical nature:

mathematical algorithm {Bx : ke N}

A sequence {f : k=1,2,...} generated by a mathematical algorithm and possess-
ing properties of a sequence of independent outcomes of the random number, is called
a sequence of pseudo-random numbers. Most of mathematical algorithms for generating
pseudo-random numbers are based on the following one:

B = MB1 + 8 [mod 1], k=1,2,..., (1.3)

where fy, 6 and M are the parameters fulfilling the following constraints: ffy € (0,1), 6 €
R, while M is any natural number larger than 1. The algorithm (1.3) is called by various
names, some of them are multiplicative and congruental.
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A generator of pseudo-random numbers is any device which can generate a finite or
infinite sequence of pseudo-random numbers. Thus tables and other electronic carriers of
pseudo-random numbers are generators. A particular class of generators is made up by
mathematical algorithms. They are briefly called algorithms as only mathematical algo-
rithms are considered in this book. In order to avoid guessing what an algorithm might be
we define it here with a sufficient generality to cover all the cases considered throughout
this book. An algorithm is a function with a domain D and range R defined as follows. The
set D consists of p ordered numbers (reals, integers or mixed), and R consists of infinite
sequences of numbers (reals, integers).

1.1.1. Required properties of pseudo-random numbers

It is clear now that Monte Carlo methods deal with numbers, i.e. Monte Carlo methods
make a part of numerical methods of Theory of probability. Passing from the world of
random variables to the world of their outcomes, i.e. numbers, is always accompanied
with certain undesirable features which must be excluded. For instance, in the introductory
description of Monte Carlo simulation the notion of independent outcomes of the random
number y is used rather vaguely. An infinite sequence of independent outcomes of y may
have anomalous features failing to imitate statistical properties of the mathematical sample
of y. Such outcomes of y are theoretically exceptional. Therefore, a correct formulation
would be "almost each sequence of independent outcomes of y”. Unfortunately, such
undesirable features occur also in the analysis of pseudo-random numbers. In the following
it is assumed that repeated outcomes of a random variable, which are used in definitions,
proofs, etc., have all the necessary properties possessed by the corresponding mathematical
sample (see examples in Exercises 1.7).

A sequence of independent outcomes of a random variable & possesses statistical prop-
erties of the corresponding mathematical sample. These properties must be maintained by
a sequence of simulated outcomes of £. Pseudo-random numbers at hand and which are
used in an actual simulation of the given random variable may lack some of required prop-
erties of the corresponding mathematical sample. In a brief discussion that follows such
deficiencies are analyzed.

Pseudo-random numbers {fx : k = 1,2,...} simulate a sequence of independent out-
comes of the random number. Therefore, they must have the property which is described
as follows. Let | = [a,b] C [0,1] and let the amount of numbers B, B2, ..., By falling into
the interval | be denoted by 11 (1,N). Apparently, v1(I,N)/N is the relative frequency of
the considered finite sequence of numbers falling in I. Therefore, for any infinite sequence
of pseudo-random numbers the following equality

. V1(|,N) o
fm - =b-a @

must be valid. This requirement follows from the basic characteristics of random number,
Piyel)=b—a.



1.1. MONTE CARLO SIMULATION 5

Let £ be a random variable and F(-) be its distribution. Firstly we consider the case
where & is represented by (1.1) and F(g(z)) = z for each z € (0,1). Simulated outcomes
are defined by yx = g(Bk). Analogously to v1(I,N) of (1.4) we also need the quantity
p((—e==,x],N) defined as the amount of numbers y1,ys,...,yn falling into the interval
(—eo,x]. Apparently, p((—ee,Xx],N) =11((0,F(x)],N). A sequence of numbers y, = g(f),
simulating independent outcomes of &, must have the property:

lim

N—seo

p((—oo7X],N) _
— N - F(x).

This property is always valid because of (1.4). Hence, in the case of representation (1.1)
and F og = 1, the basic statistical property (1.4) of pseudo-random numbers ensures the
required statistical properties of the simulated sequence {yx :k=1,2,...}.

However, Condition (1.4) is not the only one which must be fulfilled by a sequence of
pseudo-random numbers. This assertion will become clear after an example of simulation.

Very often Monte Carlo methods are used in applications as an alternative approach
to estimate probabilities of events. Monte Carlo methods can be advantageous whenever
numerical evaluations of probabilities by deterministic methods represent a complex nu-
merical procedure. The following simple example can illustrate this alternative approach.
Let us consider the 5-dimensional normal random variable (&1, &, . .., &) with zero expec-
tations E[£] = 0, and the covariance matrix cij = E[&;&;] defined by:

2 1. .\ sin(Z(i—]j -
Cij :Eexp (_5“_”) (5(71-]))7 |7J:1727"'75' (15)

To estimate the probability of event Ko = {&1 < &+ &3+ &1 < &5}, i.e. the number P(Ky),
we can use the definition of this probability in terms of 5-dimensional density. The corre-
sponding expression is a 5-dimensional integral over R®. This expression is complex from
the numerical point of view so that Monte Carlo simulations of the event and statistical
estimates of its probability yield a more efficient method. Of course, any other event C de-
fined by a relation among the random variables &;,&,, ..., &s, can be simulated by Monte
Carlo methods as well.

Suppose that the random variables &; of the example are represented as & = gi(y1, 2,
...,¥%),i=1,2,...,5, where g; are functions from (0,1)° to R and y1,72,...,¥s are inde-
pendent random numbers. Then the simulated sequence has the form

y5(kfl)+l7y5(kfl)+27 ---7YSk7 k= 1727 ey
where
Ysk—1)+r = Or(Bsk—1)+15 Bsk—1)+2, - - » Bsk)-
A sequence of numbers ys_1),r,r = 1,2,...,5, simulating an event i, can be used for an
unbiased estimation of P(KC) if the sequence of points

Z = (BS(k*l)#{h ﬁ5(kfl)+27 seey ﬁ5k) S [071]57 k= 1727"'7

has a property which generalizes (1.4). Instead of interval I in (1.4) we consider a rectangle
| = [ag,by] x [ag,b2] x --- x [as, bs] € [0,1]® with the volume vol (1) =IT5 (bi —a;). Among
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N simulated points z1,25,...,zy € [0,1]° there are vs(I,N) points in the set |. Then there
must hold

. VS(I ) N)
hIl_ngo - = vol (I). (1.6)
A sequence of pseudo-random numbers and the corresponding sequence of derived points
zx C [0,1]° may lack the property (1.6). The validity of (1.6) is to be considered as an
additional property of the sequence {fx :k=1,2,...}.

The equality (1.6) is defined for v4(1,N) with d = 5. No doubt it can be defined for
any d € N. Let the function g in (1.2) have its range equal to N. Then the corresponding
random variable £ is simulated by a sequence of numbers y, which are defined by m + 1
subsequent numbers of {fy : k =1,2,...}. In addition, the number m varies with k. The
resulting sequence {yx : k =1,2,...} simulates independent outcomes of & iff

. yg(I,N)

'\Ilmo N - vol (1), .7
is valid for any d € N. In a simulation of sample paths of stochastic processes we are
faced with the requirements (1.7) which must be valid for all d. In Chapters 3. — 7. certain
stochastic processes are studied from the point of view of simulations. It follows that
the sample paths of these processes are defined as functions of a countable number of
independent random numbers. Simulations of such sample paths will be acceptable if the
utilized sequence of pseudo-random numbers has the property (1.7) foranyd =1,2,....

Let F(d) be the algebra of events generated by d independent random numbers y1,. ..,
vq. For instance, the event {y1 < y» < --- < 14} is an element of that algebra. By using a
sequence of pseudo-random numbers an event in F(d) can be simulated and its probability
estimated by the corresponding statistics. This numerical process gives an acceptable re-
sult if the utilized sequence of pseudo-random numbers has the property defined by (1.7).
Therefore, sequences of pseudo-random numbers are classified additionally with respect
to the largest d for which (1.7) is valid.

1.1.2. Required properties of functions g(-) and gn(---)

Conditions (1.7) for all values of d are not the only ones to be satisfied in a successful sim-
ulation of random variables. Here we begin with an example demonstrating a possibility
of an unwanted result of simulation of a random variable. Let {f,k € N} be a sequence of
pseudo-random numbers which is used in simulations of £ = g(y). The function g in this
example is defined as follows. Let R = {x1,X2,...} C [0, 1] be an infinite sequence and

1,2
_ ) zz¢ for zeR,
9@) = { 22 for ze[0,1]\R.

By using the sets R(x) = {xj € R : xj < x} we can write

Fex) = PE < = [ dz+ [ dz = VX
: RX) 0./A\RX)
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Hence, the random variable £ = g(y) is equivalent to the random variable é = 72 be-
cause both of them have the same distribution, f(x) = /X. If by some chance we have
R = {Bk.k € N} then the simulated sequence yx = g(B«) will have statistical properties
of the random variable %yz, contrary to our expectations. Similar non-regularities can
be expected if R and {f«,k € N} have a sufficiently large intersection. In order to avoid
such deviations in a process of simulations of random variables, the functions g(-), as well
as gm(---), must have certain properties. It is clear that any sequence of pseudo-random
numbers is acceptable for simulation of & = g(y) if the function g has a finite number
of discontinuities. Even if the number of discontinuities is not finite, the number of its
accumulation points must be finite. In all such cases the integral of g(-) over [0,1] can
be defined as the Riemann integral. In our study of Monte Carlo simulations, the func-
tions g(-),gm(:--), etc., will belong to a particular class of functions to be defined at the
beginning of next section. These functions produce no anomalous behavior of simulated

sequences {yx = g(B«) : | € N}.

1.2. Equidistributed numbers in the Weyl sense

How to recognize that an infinite sequence of numbers with values in [0,1] is a sequence
of independent outcomes of the random number? An answer to this question comes from
results of statistical tests. The number of statistics which is necessary for testing the men-
tioned sequence {f,k € N} cannot be finite. Objectives of the present section are constric-
tions of statistics which are sufficient to answer the question whether or not a sequence of
numbers {fx,k € N} has properties as a sequence of independent outcomes of the random
number. A sequence of such statistics is called a complete sequence (or set) of statistics.
To construct statistics we need the notion of piece-wise continuous function.

A real-valued function f from D c RY into R is denoted by various symbols such as
f:D—-R, Dox— f(x) € R, x— f(x), or simply f(-). The indicator of an interval
[a,b] C [0,1] is denoted as 1, ,) and defined by:

B 1 for xelab],
Yjap)(X) —{ 0 for x¢[ab].

Analogously is defined the indicator of a set D C RY. This is a function with values
1p(x) =1forx € Dand 1p(x) =0 for x ¢ D.

Definition 1.1. (P.w.C. FUNCTION) A function f on RY is piece-wise continuous with
respect to the decomposition RY = U Dy if there exists a finite collection of L measur-
able and disjoint subsets Dy C RY, and bounded, uniformly continuous functions on RY,
fi, fa,.... f, suchthat R = Uk Dy and f = S, fjp,.

If no misunderstanding can happen, the terminology ‘piece-wise continuous with re-
spect...” is replaced by a simpler one *piece-wise continuous’. A function fp on D C RY is
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piece-wise continuous if there exists a piece-wise continuous f on R such that fp = f|D.
Piece-wise constant functions are special cases of piece-wise continuous ones. For in-
stance, indicators and their linear combinations are piece-wise constant functions. A piece-
wise continuous function is often written as p.w.c. function.

(@) (b)

Piece-wise continuous functions on [0,1].
(@): f(0.5)=0, (b): f(0.5)=0.5.

Figure 1.2.

In the case of a function from an interval [a,b] into R, the following possibility is
obtained. A function f : [a,b] — R is piece-wise continuous on [a,b], if there exists a
finite number of points a = xg < X1 < X2 < --+ < Xym = b, such that f is continuous on the
intervals (Xj,Xj4+1), j =0,1,...,m—1, and has finite values at the boundary points of these
intervals. Two examples of piece-wise continuous functions are illustrated in Figure 1.2. It
is interesting to notice that in case (b) the boundary values of f at x = 1/2 differ mutually
and also from the value of f atx=1/2.

A continuous function on the interval [a,b] C R is called piece-wise linear if there
exists a finite number of points xg = a,X1,...,Xn = b and a finite number of real numbers
fo, f1,..., fy such that f(xi) = f;,i=0,1,...,N, and f is linear on subintervals [xj_1,Xi]. A
continuous function f : R — R is called piece-wise linear if there exists a bounded interval
[a,b] C R such that f|[a,b] is piece-wise linear and f(x) = 0 for x ¢ [a,b]. An illustration
of a piece-wise linear function is given in Figure 1.3.

¢(h,r.x) f

\_ /N

0 r—hr 1 X X

A hat-function A piece-wise linear function

Figure 1.3.
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A hat-function is an example of a piece-wise linear function. It is defined by

|x—r|
L E— — <
(h,1,%) { 1 P for |x—r] : h,
0 otherwise,

and illustrated in Figure 1.3. We say that the hat-function ¢ (h,r,-) has its center in r and
support [r —h,r+h].

A piece-wise linear function is a linear combination of hat-functions. In other words,
the hat-functions span the linear space of piece-wise linear functions.

Let f :[0,1] — R be a p.w.c. function defining the random variable n = f(y) and let
{11,72,...} be an infinite sample of independent random numbers. Statistics of the random
variable n are defined by:

M=z

s(f,N) = (%), NeN.

Z|l -

k=1

The expectation and variance of s(f,N) have the well known expressions:

=S = Elnl = [ 000

Var(s(f,N)] :%Var _ Uf []2}

One of possibilities of a complete sequence of statistics is defined by using all the
indicators f(x) = 1, ,)(x), for which [a,b] have rational endpoints: ax = (k —1)27", by =
k27" k=1,2,...,2"'\n=1,2,.... The set of such intervals is countable and

1 N
S(]l = N 2 l[ab E{S<1[a,b]aN):| = b-a. (18)

Another sequence of a complete set of statistics is defined by statistical moments of all
orders, s(x™,N) = N=1 3, (%)™, E[s(x™,N)] = (m+1)~1. There are other important se-
quences of a complete set of statistics which will be described later. They are defined by
using various bases of the linear space of piece-wise continuous functions f : [0,1] — R.
After Herman Weyl, we define equidistributed numbers or pseudo-random numbers by
using (1.8):

Definition 1.2. (OF EQUIDISTRIBUTED NUMBERS (H. WEYL)) A sequence of numbers
{B«: k € N} C [0,1] is called equidistributed in [0,1] if for any subinterval [a,b] C [0,1]
the following equality is valid:

Jim N 2 Ljap(B) = b—a. 1.9

A sequence of numbers {f : k € N} fulfilling (1.9) for all subintervals [a,b] is also
called a sequence of pseudo-random numbers. Both names are used, so that in Theory of
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numbers the name equidistributed is used almost regularly while the name pseudo-random
numbers is a preferable name in the applications of Monte Carlo methods. In the next
section we define and study multiply equidistributed numbers. Therefore, by Definition
1.2 only simply equidistributed numbers are defined.

It is necessary to answer several important questions about equidistributed numbers or
pseudo-random numbers, such as the existence of such numbers, how to test their proper-
ties, about convenient algorithms to generate such numbers, etc.

Let {fx : k € N} be a sequence of pseudo-random numbers. For any p.w.c. function f
we define

(f) = lim

f(Bx), (1.10)

Z| =~
HXMZ

whenever the right hand side exists. The set of all such piece-wise continuous functions is
denoted by £. Apparently, the set £ is a linear space, i.e. (oq f1 +0pf2) = oq (f1) + o (f2)
for any pair of p.w.c. functions f;, f, € £ and a pair of real numbers oq, . The linear
space £ contains indicators of all the intervals I C [0,1].

Lemma 1.3. Let f be a p.w.c. function on [0,1] and let for each & > 0 there exists two
functions f_, f, € £ such that

f_(x) < f(x) < f.(x),
sup | f(x) — fo(x)| < e. (1.11)
xe(0,1]

Then f € L.

A proof follows directly from the following sequence of inequalities:
1N 1N
(fo) <liminf = f(B) < limsup = » f(B) < (fy).
NCNS N NG

Let { B« : k € N} be a sequence of numbers with values in [0,1]. Let us consider a p.w.c.
function on [0, 1] for which the following equality

N 1
(f) = @%2 :/0 £(x) dx (1.12)

is valid. All such functions span a linear space denoted by K. The space L is defined
by a sequence of pseudo-random numbers, while the space K is defined by a sequence of
numbers with values in [0,1] which are not necessarily pseudo-random numbers.

Lemma 1.4. Let {f : k € N} be a sequence of numbers in [0,1] and let C be the linear
space of all p.w.c. functions f on [0, 1] for which (1.12) is valid. If for any interval I C [0, 1],
and any positive number € > 0 there exists a pair f_, f. € K fulfilling the inequalities

fo () <11(x) < £ (%),
(fi) = (f-) <e,

then {f : k € N} is a sequence of pseudo-random numbers.
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A proof follows from the following relations:

T2l f(B) < § 3l LB < g2l (B,
b—a—e¢ < liminfy %2{2‘:1 II(Bk)
<limsupy & 3R, 11 (B) < b—a+e.

Now we come to the first important result:

Theorem 1.5. (NECESSARY AND SUFFICIENT CONDITION ON EQUIDISTRIBUTION)
Let {fB : k e N} C [0,1]. This sequence is equidistributed in [0, 1] iff the following equality

N 1
% Z /O £(x) dx (1.13)

is valid for any function f which is continuous on [0,1] and f(0) = f(1).

fvﬂ\ f’f’n S
| |
0 1 X 0 1 X

A continuous function f is approximated
by step-functions from below (left) and above (right)

Figure 1.4.

PROOF: Necessity. Let {f : k € N} be eqidistributed in [0,1] and generally f(0) #
f(1). The interval [0,1] is divided into 2" subintervals of equal length:

k—1 k 1
\](k) - [77F>7 k:1,2,...,2n717 \](Zn) - |:1 ﬁ71:|

Let f and fx be the infimum and supremum of f on J(k), respectively. The functions,

n

2"
x = fx) = Y filyp(x), x— fa(x 2

k=1~

N
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are piece-wise constant functions approximating the function f from below and above as
illustrated in Figure 1.4. These functions belong to £ and:

fa0 <109 < fa0),
sup,coy { 1100~ Fa00)l, 1F00— o)l } < e(n),

where
“,ﬂn e(n) = 0.

Thus, by Lemma 1.3 f € £ and (1.13) is valid.

Sufficiency. Let us consider firstly the case I = [a,b] C (0,1). For the chosen 1, ) and
sufficiently small € > 0 there are two trapezoidal functions f_,, f, . as illustrated in Figure
1.5. They are continuous and have properties assumed in the theorem. Therefore, they
belong to the space K. The inequalities (f_;) < (b—a) < (fi¢) and (f ) — (f_¢) <€
together with Lemma 1.4 imply the assertion. In case of [0,b] C [0,1) or [a,1] C (0,1] the
same argument can be used with the function f_, as before and the restriction f,|[0,1],
where f~+£ is the continuous periodic function with the period 1 extending the trapezoidal
function f... O

A continuous function on [0, 1] can be represented by its Fourier series and the condi-
tion (1.13) can be derived from the corresponding conditions of trigonometric functions.
In this way we come to the next important result:

f f*87 erS

An approximation of indicator by continuous
trapezoidal functions

Figure 1.5.

Theorem 1.6. (THE WEYL CRITERION) Let {f : k € N} C [0,1] be given. Then the

equalities
N

1 .
lim = gl exp (meﬁk) -0, (1.14)
for each m € N are valid iff { B : k € N} is equidistributed.

PrROOF: Necessity follows from the previous theorem.
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Sufficiency. A continuous function on [0,1] with equal values at the end-points can
be approximated arbitrarily well by a piece-wise linear function having also equal values
at the end-points of [0,1]. Any piece-wise linear function f on [0,1], f(0) = f(1), can
be extended to a continuous and periodic function on R with the period equal to 1. This
periodic function can be represented by its Fourier series converging absolutely to f. Piece-
wise linear functions are finite combinations of hat-functions. Hence, in this proof, it is
sufficient to consider a hat-function and its periodic extension for which the support has
length less than 1.

Let x — p(h,r,x) be a continuous function on R extending a hat-function ¢ (h,r,-) (see
Figure 1.3) by periodicity with the period 1. Its Fourier series has the form:

p(h,rx) =h+ ak{cos(anr) cos(2mkx) + sin(2nkr)sin(2nkx)},
k=1

where

2,
ag = Wsln (ﬂkh)

Because of the absolute convergence of the series the equalities (1.14) imply

N
Y p(h,r,B) =

k=1

ZlH

i.e. the equality (1.13) of Theorem 1.5. O
Let us define the quantities

W (exp,m,N) = % EN: (2nimﬁk) (1.15)

in accordance with the previous theorem. Then the countable sequence of equalities
NIi_r)an(exp7m7N) =0, for m=1,2,...,
is called the Weyl criterion.
Corollary 1.7. Let there be defined two sequences of numbers, xx and yx = X + o, where
o € R. If the numbers By = x, [mod 1] are equidistributed in [0,1] then oy = yx [mod 1]
are also equidistributed.
A proof of this result follows directly from the Weyl criterion.
Corollary 1.8. Lett be irrational and let us consider the sequence of numbers
Bx =tk [mod 1], k=1,2,.... (1.16)

Then By are equidistributed in [0, 1].





