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1.
Introductory part

In order to follow the contents of this book with full understanding,
certain prerequisites from high school mathematics will be necessary. This
firstly pertains to the basic concepts from the plane geometry and the space
geometry. From the field of planimetry one should be familiar with all
the facts and theorems about the triangle that are included in the standard
high school program. The same is valid for spatial geometry, where it is
required to have a solid knowledge on the mutual positions of lines and
planes in space, with special emphasis on parallelism and perpendicularity.

In the proofs of theorems and the solutions of problems we tried to
use the geometrical (synthetic) method wherever possible. Sometimes,
however, we were not able to evade the usage of trigonometry or, in certain
cases, the very nature of a problem or a theorem required such an approach.
Therefore it is assumed that the reader has mastered the basic concepts of
trigonometrical functions and trigonometrical facts about the triangle.

In the same way, a necessity of vector algebra quite naturally occurs
in the text. Hence, the reader should be familiar with the concepts of vec-
tor addition and subtraction, as well as with multiplication of a vector by
a scalar, furthermore with linear independency of vectors, inner product,
vector product and mixed product of vectors. In several problems, a tetra-
hedron is given by the coordinates of its vertices in a coordinate system
in space. That requires elementary knowledge of analytical geometry of
space, such as distance between two points in space, equation of a plane,
distance between a point and a plane and so on.

We also use some theorems and formulas of elementary mathematics
which either rarely occur or do not occur at all in high school programs in
mathematics.

11

1.
Introductory part

In order to follow the contents of this book with full understanding,
certain prerequisites from high school mathematics will be necessary. This
firstly pertains to the basic concepts from the plane geometry and the space
geometry. From the field of planimetry one should be familiar with all
the facts and theorems about the triangle that are included in the standard
high school program. The same is valid for spatial geometry, where it is
required to have a solid knowledge on the mutual positions of lines and
planes in space, with special emphasis on parallelism and perpendicularity.

In the proofs of theorems and the solutions of problems we tried to
use the geometrical (synthetic) method wherever possible. Sometimes,
however, we were not able to evade the usage of trigonometry or, in certain
cases, the very nature of a problem or a theorem required such an approach.
Therefore it is assumed that the reader has mastered the basic concepts of
trigonometrical functions and trigonometrical facts about the triangle.

In the same way, a necessity of vector algebra quite naturally occurs
in the text. Hence, the reader should be familiar with the concepts of vec-
tor addition and subtraction, as well as with multiplication of a vector by
a scalar, furthermore with linear independency of vectors, inner product,
vector product and mixed product of vectors. In several problems, a tetra-
hedron is given by the coordinates of its vertices in a coordinate system
in space. That requires elementary knowledge of analytical geometry of
space, such as distance between two points in space, equation of a plane,
distance between a point and a plane and so on.

We also use some theorems and formulas of elementary mathematics
which either rarely occur or do not occur at all in high school programs in
mathematics.

11

1.
Introductory part

In order to follow the contents of this book with full understanding,
certain prerequisites from high school mathematics will be necessary. This
firstly pertains to the basic concepts from the plane geometry and the space
geometry. From the field of planimetry one should be familiar with all
the facts and theorems about the triangle that are included in the standard
high school program. The same is valid for spatial geometry, where it is
required to have a solid knowledge on the mutual positions of lines and
planes in space, with special emphasis on parallelism and perpendicularity.

In the proofs of theorems and the solutions of problems we tried to
use the geometrical (synthetic) method wherever possible. Sometimes,
however, we were not able to evade the usage of trigonometry or, in certain
cases, the very nature of a problem or a theorem required such an approach.
Therefore it is assumed that the reader has mastered the basic concepts of
trigonometrical functions and trigonometrical facts about the triangle.

In the same way, a necessity of vector algebra quite naturally occurs
in the text. Hence, the reader should be familiar with the concepts of vec-
tor addition and subtraction, as well as with multiplication of a vector by
a scalar, furthermore with linear independency of vectors, inner product,
vector product and mixed product of vectors. In several problems, a tetra-
hedron is given by the coordinates of its vertices in a coordinate system
in space. That requires elementary knowledge of analytical geometry of
space, such as distance between two points in space, equation of a plane,
distance between a point and a plane and so on.

We also use some theorems and formulas of elementary mathematics
which either rarely occur or do not occur at all in high school programs in
mathematics.

11

1.
Introductory part

In order to follow the contents of this book with full understanding,
certain prerequisites from high school mathematics will be necessary. This
firstly pertains to the basic concepts from the plane geometry and the space
geometry. From the field of planimetry one should be familiar with all
the facts and theorems about the triangle that are included in the standard
high school program. The same is valid for spatial geometry, where it is
required to have a solid knowledge on the mutual positions of lines and
planes in space, with special emphasis on parallelism and perpendicularity.

In the proofs of theorems and the solutions of problems we tried to
use the geometrical (synthetic) method wherever possible. Sometimes,
however, we were not able to evade the usage of trigonometry or, in certain
cases, the very nature of a problem or a theorem required such an approach.
Therefore it is assumed that the reader has mastered the basic concepts of
trigonometrical functions and trigonometrical facts about the triangle.

In the same way, a necessity of vector algebra quite naturally occurs
in the text. Hence, the reader should be familiar with the concepts of vec-
tor addition and subtraction, as well as with multiplication of a vector by
a scalar, furthermore with linear independency of vectors, inner product,
vector product and mixed product of vectors. In several problems, a tetra-
hedron is given by the coordinates of its vertices in a coordinate system
in space. That requires elementary knowledge of analytical geometry of
space, such as distance between two points in space, equation of a plane,
distance between a point and a plane and so on.

We also use some theorems and formulas of elementary mathematics
which either rarely occur or do not occur at all in high school programs in
mathematics.



12 1. INTRODUCTORY PART

Such theorems and formulas will be explicitly stated and some of the
proofs will be given, too.

There is a well-known Heron’s formula for the area of a tri-
angle with given sidelengths a , b and c . That formula reads P =√

s(s − a)(s − b)(s − c) , where s denotes the semiperimeter of the trian-
gle. This formula may be written in another form:

P =
1
4

√
(a2 + b2 + c2)2 − 2(a4 + b4 + c4). (F1)

The formula (F1) is suitable if sidelengths are real numbers or alge-
braic expressions under the square root sign √ , which is the reason why
it will be repeatedly used in such cases. The proof of the formula may be
found in [2].

We are going to point out three particular theorems for the triangle.
The first reason for that is that these theorems are used in some proofs, and
the second reason is that there exist analogous theorems for the tetrahedron,
more of which will be said later on in the book.

Th1. Let P , Q , R be given points on the respective sides BC , CA and
AB of a triangle ABC. The lines AP , BQ and CR intersect in one
point if and only if |AR| · |BP| · |CQ| = |BR| · |CP| · |AQ| (Fig. 1.1.).

Fig. 1.1.

This is Ceva’s theorem. It was stated and proved by the Italian
mathematician Giovanni Ceva (1648. – 1734.).

Th2. If a line intersects the sides BC , CA and AB of a triangle ABC in
respective points P , Q and R , then it holds: |AR| · |BP| · |CQ| =
|BR| · |CP| · |QA| (Fig. 1.2.).
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Fig. 1.2.

This theorem is named after the ancient Greek mathematician Menela-
us. The following one is Van Aubel’s theorem.

Th. If P , Q , R are points on the respective sides BC , CA and AB of
a triangle ABC chosen in such a way that the lines AP , BQ and

CR intersect at a point O , then it holds
|CO|
|OR| =

|CQ|
|QA| +

|CP|
|PB|

(Fig. 1.1.).

Let us observe certain connections between the above theorems.
Ceva’s and Menelaus’ theorem are so-called dual theorems and are ex-
pressed by the same formula. Furthermore, the assumptions on the trian-
gle in both Ceva’s and Van Aubel’s theorem are identical. Proofs of these
theorems may be found in [2]. (In that book, several proofs are supplied
for each theorem. In the case of Ceva’s theorem, for instance, seven dif-
ferent proofs are given). There is also a certain less known theorem on the
orthocentre of a triangle, which is used in the book:

Th4. The orthocentre of a triangle divides each of its altitudes into two
segments whose product is constant and equal to 4R2 cosα cos β
cos γ , where R is the circumradius and α , β , γ the angles of the
triangle.

The proof is given in [2].

A theorem concerning a particular position of lines in space is known
as the Theorem of three perpendiculars and reads as follows:

Th5. Let a and b be two mutually perpendicular lines of a plane π , let
A be their intersection point and let c be the line perpendicular to
the plane π , passing through a point O of the line a , with O �= A .
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If C is any point on c , then the lines CA and b are perpendicular,
too.

Proof.

Fig. 1.3.

Since the line c is perpendicular to the plane π , c is also perpendicu-
lar to any line in that plane, including the line b (Fig. 1.3.). We see that the
line b is perpendicular to the lines a and c . Therefore, b is perpendicular
to any line in the plane determined by a and c , hence perpendicular to the
line CA , too, which is the assertion of the theorem. Q.E.D.

Next theorem will be frequently used in the proofs of some theorems,
as well as in the solutions of several problems. Therefore, we are going to
prove it. The theorem reads as follows:

Th6. Let ϕ be the angle between the planes
∑

1 and
∑

2 . If a polygon
of area P is situated in the plane

∑
1 and the orthogonal projec-

tion of that polygon to the plane
∑

2 is a polygon of area Q , then
Q = P cosϕ .

Proof. We use the notation as in fig. 1.4 Every polygon may be decom-
posed into a finite number of triangles. The area of a triangle does not
depend on its position in the plane

∑
1 , so that the same holds for its

orthogonal projection. Therefore it suffices to prove that the theorem is
valid for a triangle in such a position as shown in the figure. Let the triangle
ABC be positioned in the plane

∑
1 in such a way that its side AB lies in

the intersection of the planes and its vertex C is in any point of
∑

1 . If
C′ is the orthogonal projection of C onto the plane

∑
2 , then the triangle

ABC′ is the orthogonal projection of the triangle ABC . If D is the foot of

the altitude of the triangle ABC from vertex C , then P =
1
2
|AB| · |DC| .
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Fig. 1.4.

According to the Theorem of three perpendiculars (see Th5.), DC′ is
perpendicular to AB , which means that DC′ is the altitude of the triangle

ABC′ from vertex C′ . Therefore Q =
1
2
|AB| · |DC′| =

1
2
|AB| · |DC| cosϕ

= P cosϕ . Q.E.D.

Now we are going to explore a very important notion of the geometry
of space. That notion and the theorems which are directly related thereto
will be frequently used in the following text. It is the trihedron.

D1. Let a , b and c be three rays in space which do not lie in the
same plane and which have a common origin O . The part of space
bounded by the three angles determined by those rays in pairs is
called a trihedron.

Fig. 1.5.

The point O is the vertex and the rays a , b , c are the edges of the
trihedron. The parts of planes determined by pairs of edges are the faces
of the trihedron. A trihedron is represented in a plane by its projection, as
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called a trihedron.

Fig. 1.5.

The point O is the vertex and the rays a , b , c are the edges of the
trihedron. The parts of planes determined by pairs of edges are the faces
of the trihedron. A trihedron is represented in a plane by its projection, as



16 1. INTRODUCTORY PART

in Fig. 1.5. Trihedron is important in the study of the tetrahedron. Let us
state an analogy between the triangle and the tetrahedron. If an angle with
vertex A is intersected by a line that meets the sides of the angle in the
points B and C , then the angle is divided into two parts, one bounded and
one unbounded. The bounded part is the triangle ABC with vertices A , B
and C .

Fig. 1.6.

We could define the tetrahedron in a similar way: if a trihedron with
vertex O is divided into two parts by a plane which intersects its edges
in the points A , B and C , then the bounded part is a tetrahedron with
vertices O , A , B and C , as shown in Fig. 1.6.

There are two types of angles defined in a trihedron:

1. Angles determined by two edges are called face angles of a trihedron.
There are three such angles in a trihedron.

2. Angles between two faces, or dihedral angles, determined by two
faces of a trihedron. A tetrahedron obviously has three such angles.

At this point I have to say that, unfortunately, in the Croatian mathe-
matical terminology there is no full accordance with regard to these angles.

When we talk about the angle at a certain edge of a trihedron, we
mean the angle between the two faces having that edge in common.

To each face angle we associate the angle between those two faces
which share the edge that is not an edge of that face angle. We say that to
each face angle we asociate the opposite angle of two faces of the trihedron.
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In a trihedron with vertex O and edges a , b and c , we will denote
face angles by α1 , β1 , γ1 , and angles between faces (dihedral angles) by
α1 , β1 , γ1 as it is shown in Fig. 1.7.

Fig. 1.7.

We can see, for instance, that the face angle α is situated opposite to
the edge a , and the corresponding dihedral angle at that edge is denoted
by α1 . An analogous accordance of notation holds for other edges and
angles. The following theorems are valid for the face angles of a trihedron:

Th7. Each face angle is smaller than the sum of the other two face angles
and greater than the difference of the other two face angles.

This proposition is easily proved in such a manner that one edge is
orthogonally projected onto the opposite face, so that the opposite angle is
divided into two parts, each of them smaller than the corresponding face
angle.

Th8. If two face angles in a trihedron are equal, then their opposite
dihedral angles are equal, too.

Hint for a proof: Project orthogonally the edge that the equal face
angles have in common onto the opposite face and also project any point
of that edge onto the other two edges.

Th9. If the face angles of a trihedron satisfy the relation α < β < γ ,
then for the opposite dihedral angles the relation α1 < β1 < γ1 is
valid.

This assertion, too, is easily proved by projecting orthogonally one
edge of the trihedron onto the plane of its opposite face.
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The previous theorems remind us of some assertions about the interior
angles of a triangle. We know that the sum of such angles equals 180◦ .

However, the sum of face angles of a trihedron is not constant and the
following theorem holds.

Th10. The sum of the face angles of a trihedron is smaller than 360◦ .

Proof. We observe the intersection of a trihedron with the vertex O and
the face angles α , β and γ by any plane, in such a way that it intersects
the edges of the trihedron in the points A , B and C , as shown in Fig. 1.8.

Fig. 1.8.

If O′ is the orthogonal projection of the vertex O onto the plane ABC ,
then it obviously holds α = <)BOC < <)BO′C , β = <)COA < <)CO′A ,
γ = <)AOB < <)AO′B . Therefrom one gets α + β + γ < <)BO′C +
<)CO′A + <)AO′B , or α + β + γ < 360◦ . Q.E.D.

Similarly, the sum of dihedral angles of a trihedron is not constant,
but the following theorem holds.

Th11. Dihedral angles of a trihedron satisfy the relation:

180◦ < α1 + β1 + γ1 < 540◦.

Proof. Consider a trihedron with vertex in the point O . Let O′ be any
point inside the trihedron and A′ , B′ , C′ projections of the point O onto
the faces of the trihedron. The perpendiculars from those points onto the
edges of the trihedron mutually intersect in pairs on the edges, in the points
A , B and C , as represented in Fig. 1.9.

Dihedral angles of our trihedron are: α1 = <)C′AB′ , β1 = <)A′BC′ ,
γ1 = <)B′CA′ . If we denote the face angles of the trihedron A′B′C′O′ by
α′ , β ′ , γ ′ then α1 + α′ = 180◦ , β1 + β ′ = 180◦ , γ1 + γ ′ = 180◦ .
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Fig. 1.9.

By adding up one gets (α1 + β1 + γ1) + (α′ + β ′ + γ ′) = 540◦ .
An application of the theorem Th10. to the tetrahedron A′B′C′O′ directly
yields the assertion of the theorem. Q.E.D.

The following theorem shows how to calculate the dihedral angles of
a trihedron if the values of face angles are given.

Th12. If α , β and γ are face angles, and α1 , β1 and γ1 are dihedral
angles of a trihedron, then

cosα1 =
cosα − cosβ cos γ

sin β sin γ
, cos β1 =

cos β − cos γ cosα
sin γ sinα

,

cos γ1 =
cos γ − cosα cos β

sinα sin β
.

Proof. On the edges of a trihedron with vertex in the point O determine the

points A , B and C such that the vectors �e1 =
−→
OA , �e2 =

−→
OB , �e3 =

−→
OC

be unit vectors. Let D and E be the feet of the perpendiculars from the
points B and C to the line OA . Then, by definition of a dihedral angle,

α1 = <)(
−→
DB ,

−→
EC ) (Fig. 1.10.).

It holds
−→
DB =

−→
DO + �e2 ,

−→
EC =

−→
EO + �e3 . Since

−→
DO · �e3 =

|DO| · 1 · cos(−β) = − cos γ cosβ ,
−→
EO · �e2 = − cosβ cos γ , it fol-

lows
−→
DB · −→EC = cos γ cos β − cosβ cos γ − cosβ cos γ + cosα . Fi-

nally, owing to
−→
DB · −→

EC = sin γ sin β cosα1 , we obtain cosα1 =
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cosα − cosβ cos γ
sin β sin γ

. The other two formulas of the theorem can be proved

in an analogous manner.

Fig. 1.10.

Q.E.D.

Let us state the formula for the volume of a tetrahedron determined
by vectors of its edges with the origin in a common vertex:

ax ay az

V =
1
6

∣∣∣(�a ×�b
)
· �c

∣∣∣ =
1
6

bx by bz

cx cy cz

. (F2)
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