Chapter

Preliminaries

1.1, Spaces of integrable, continuous and absolutely
continuous functions

In this section we listed definitions and properties of integrable funetions, continuous func-
tions, absolutely continuous functions and basic properties of-the Laplace transform. Also
we give required notation, terms and overview of some important results (more details
could be found in monographs [57, 59, 70, 74]).

L, spaces

Let [a,b] be a finite interval in R, where\—co<a < b < co. We denote by L,[a,b], 1 < p < oo,
the space of all Lebesgué measurable functions f for which [ |f(1)|P dr < oo, where

It = blf(t)”dtf ,

and by L..[a, b] the set of all functions measurable and essentially bounded on [a,b] with

[|f1]eo = esssup{[f(x)[: x € [a,b]} .

Theorem 1.1 (INTEGRAL HOLDER’S INEQUALITY) Let p,q € R suchthat1 < p,q<oo
and %Jr é =1. Let f,g: [a,b] — R be integrable functions such that f € Ly[a,b] and
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2 1 PRELIMINARIES

g € Ly[a,b]. Then
b
[ 1r0slar <171 lsll- (1)

Equality in (1.1) holds if and only if A|f(¢)|” = B|g(t)|? almost everywhere, where A and
B are constants.

Spaces of continuous and absolutely continuous functions

We denote by C"[a,b], n € Ny, the space of functions which are n-times continuously
differentiable on [a, b], that is

C'a,b] = {f: la,b] — RS, £ GC[a,b],k:O,l,...,n} .

In particular, C°[a,b] = Cla, b] is the $pacé of continuous functions on [a, ] with the norm

n

1£llee = Y [1f e = Y, max |70 ()],
k=0 f=0*€lad]
and for Cla, b)
Iflle = max |f(x)].
x€la,b]

Lemma 1.1 The space C"[a,b] consists of those and only those functions f which are
represented in the form

1 x n—1 o k
Flx) = )!/a (-1 L@y dr + 3 cr(x—a)f, (1.2)

(n—1 )

where @ € Cla,b] and ¢y are arbitrary constants (k=0,1,...,n—1).

Moreover,

fW(a)
k!

By C?[a,b] we denote the subspace of the space C*{a, b] defined by

o) =f"0), a=

(k£0,1)..,n%1). (1.3)

C"a,b] = {fec"[a,b]: f<k>(a)=o,k=0,1,...,n—1}.
For f € C"[a,b] and 0 < u < 1. we define

TRIOEFRI)

e — y|*

D“‘n,’u = sup RIS [avax#y

Let >0, o ¢ N, n the integral part of o (notation n = [a]) and let u = o« — n. By 2%|a, b]
we denote the space

7ab] = {1 € C'la.b]: |l <>},
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and by 2%[a, b] the subspace of the space Z%[a, b]
P%[a,b] = {f e 2%a,b): fP(a) =0,k = 0,1,...,n} .

Specially, for o = n € N we have 2"[a,b] = C"|a,b] and Z}[a,b] = C}[a,b].

The space of absolutely continuous functions on a finite interval [a,b] is denoted by
ACla,b]. Tt is known that AC|a,b] coincides with the space of primitives of Lebesgue
integrable functions L [a, b] (see Kolmogorov and Fomin [53, Chapter 33.2]):

feaclatl & 10 =@+ [ Gdr g Lilab).

and therefore an absolutely continuous function  has an integrable derivative f’(x) = @(x)
almost everywhere na [a,b]. We denote by AC"[a,b], n € N, the space

AC"[a,b] = {f &C" a,b]: f1) ¢ AC[a,b}} .
In particular, AC'fa, b] =AC]a,b].

Lemma. 1.2 The space AC"[a,b] consists of those and only those functions which can
be.represented in the form (1.2), where ¢ € Ly[a,b] and ¢y are arbitrary constants (k =
0,1,%.,n—1).

Moreover, (1.3) holds.

The next theorem has numerous applications involving multiple integrals.

Theorem 1.2 (FUBINI’S THEOREM) Let (X,.#, 1) and (Y, N V) be o+finité’ measure
spaces and f u x v-measurable function on X x Y. If f > 0, then next integrals are equal

[ sty /(/fxydv i) and [ [ seoraut) )avo),

If f is a complex function, then.above equalities hold with additional requirement

JHeylau < v)e) <

XxY

Next equalities are consequences of this theorem:

/abdx/cdf(X,y)dy:/Cddy/abf(x,y)dx
/abdx/:f(x,y)dy = /abdy/ybf(x,y)dx. (1.4)
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The gamma and beta functions

The gamma function T is the function of complex variable defined by Euler’s integral
of second kind

() = / e dr, R(z)>0. (15)
0
This integral is convergent for each z € C such that 93(z) > 0. It has next property
[(z+1)=zI'G), %R()>0,

from which follows
I(n+1)=n!, neNp:
For domain fR(z) < 0 we have

I(z) = F(fz)t") . R@)Fm neN; g€ Zy ={0,—1,-2,...}, (1.6)

where (z), is the Pochhammer’s symbol-defined for z € C and n € Ny by

(o=l (@u=z(z+1)--(z+n—1),neN.

The gamma function is analytic in complex plane exceptin 0, —1,—2,... which are simple
poles.

The beta function is the function of two complex variables defined by Euler’s integral
of the first kind

1
B(z,w):/ F (1= Ve, R(2),R(w) > 0. 1)
0
It is related to the gamma function with
I'(z)T(w) _
B =—_"—" Z
(Z’W) F(Z+W) 9 Z,W§Z 0
which gives
B(z+1,w) = B(z,w).
c+1w)'s £oBh)

Next we proceed with examples of integrals often used in proofs and calculations in
this book.

Example 1.1 Let o3 .> 0 and x € {a,b]. Then by substitution 7 = x — s(x — a) we have

Rt o tar = /l(xf @)@ P=157=1 (1 — 5P ds
a 0
— B, B)(x—a)**F1.

Analogously, by substitution # = x + s(b — x), it follows

/b(t —x)* Y b—1)PVdr = B(ar, B) (b —x)*H P71
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Example 1.2 Let a3 >0, f € L[a,b] and x € [a,b]. Then interchanging the order of
integration and evaluating the inner integral we obtain

/;(x—t)afl/at(t—s)ﬁflﬂs)dsdr _ /s;f@)/t;(x—r)a*l(z—s)ﬁfldzds

_ B(a,B)/ (x— )%V (s)ds.
Analogously,

/xb(tfx)a*' /tb(sft)ﬁ*'f(s)dsdt - B(a,ﬁ)/xb(s«x)O‘*B*lf(s)ds.

The Laplace transform

Let f: [0,00) — R be a function.such that mapping ¢ — e~ °" | f(¢)|, o > 0, is integrable on
[0,00). Then for each p > o the Lebesgue integral

P(p) = [ e rar (1.8)
0
exists. The.mapping.f — F is called the Laplace transform and noted with %, that is
Z[fl(p) =F(p).

Sufficient conditions for the Laplace transform existence are that function f is locally
integrable and exponentially bounded in oo, that is |f(¢)| < Me°" for t > e, \where M;/c
and € are constant. The abscissa of convergence oy is the smallest value of & for which
[f(@)] < Me?".

Example 1.3 Let f: [0,00) — R, f(¢) =t%, where a > —1. Obviously [f(¢)| =% < e
fort > 0and o > 0. For —1 < a < 0, the function f is locally integrable and /* < 1 for
t > 1. Therefore, by substitution pt = x, the Laplace transform has the form

= 1 7 _ IFla+1)
_ t O — o _—
f[f](p)f/o e Pt dtipo‘“/o e "x dx—ipw+l .

We give some properties and rules,of the Laplace transform, and important uniqueness
theorem ([74, Teorem 6.3]):

convolution: ¥ [/tf(t —17)g(7) dr} (p)=2Z1f1(p) Zgl(p)
0

differentiation: 2 [£] () = p"Z11)(p) — ¥, "4 (0)
k=1

Theorem 1.3 (UNIQUENESS THEOREM) Let f,g: [0,00) — R be two functions for which
the Laplaceova transform exists. If

/Ome*l”f(t)dt = /Ow e Pg(t)de

for each p on common area of convergence, then f(t) = g(t) for almost every t € [0,eo).
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1.2 Convex functions and Jensen’s inequalities

Definitions and properties of convex functions and Jensen’s inequality, with more details,
could be found in monographs [61, 62, 67].
Let I be an interval in R.

Definition 1.1 A function f : I — R is called convex if

F((A=2A)x+Ay) < (1=A)f ()£ Af(¥) (1.9)

Sor all points x and y in I and all A € [0y1]. It is called strictly convex if the inequality
(1.9) holds strictly whenever x and y are distinct'pointssand A € (0,1). If —f is convex
(respectively, strictly convex) then we/say that.f is.concave (respectively, strictly concave).
If f is both convex and concave; then f-is said to be affine.

Lemma 1.3 (THE DISCRETE.CASE OF JENSEN’S INEQUALITY) A real-valued function

f defined on an interval L.is convex if and only if for all x1,...,x, in I and all scalars
Aty Ay 0, 1 with Y7 Ay = 1 we have

f(Z )’kxk> <Y Aef(x). (1.10)
=1 =1

The above inequality is strict if f is strictly convex, all the points x; are distinct and all
scalars Ay are positive.

Theorem 1.4 (JENSEN) Let f : I — R be a continuous function. Then f is convex-if and
only if f is midpoint convex, that is,

f<x42ry> S f(X)ﬂsz(y) (1.11)

forallx,y € 1.

Corollary 1.1 Let f : I — R be a continuous function. Then f is convex if and only if
Sath) 4+ f(x—h)—2f(x) >0 (1.12)

for all x € I and all'h > 0 such that both x+h and x —h are in I.

Proposition 1.1 (THE OPERATIONS WITH CONVEX FUNCTIONS) (i) The addition of two
convex functions (defined on the same interval) is a convex function, if one of them
is strictly convex, then the sum is also strictly convex.

(i) The multiplication of a (strictly) convex function with a positive scalar is also a (strictly)
convex function.
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(iii) The restriction of every (strictly) convex function to a subinterval of its domain is also
a (strictly) convex function.

(iv) If f : I — R is a convex (respectively a strictly convex) function and g : R — R is
a nondecreasing (respectively an increasing) convex function, then g o\f is-convex
(respectively strictly convex)

(v) Suppose that f is a bijection between two intervals I and J. If f is.increasing, then f is
(strictly) convex ifand only if £~ is (strictly) concave. If fis a decreasing bijection,
then f and f~' are of the same type of convexity.

Definition 1.2 If g is strictly monotonic, then f-is.said to.be\(strictly) convex with respect
to g if fog™Vis (strictly) convex.

Proposition 1.2 If x|,x;,x3 € I are such'that x} < x; < x3, then the function f : 1 — R
is convex if and only if the inequality

(3= x2) f(x1 )bl —x3) f(x2) + (2 —x1) f(x3) > 0
holds.

Proposition 1.3 If f is a convex function on an interval I and if x; < yy, x3 < ya, X] # X3,
YIN£E v, then the following inequality is valid

floa) = fx) _ f2) = fn)

X2 —X| o 2=y

If the function f is concave, then the inequality reverses.

The following theorems concern derivatives of convex functions.
Theorem 1.5 Let f: I — R be convex. Then
(i) f is Lipschitz on any closed.interval in I

(if) f\ and f' exist and are increasing.in'l, and f' < f' (if f is strictly convex, then
these derivatives are strictlyincreasing);

(iii) f' exists, except passibly.on ascountable set, and on the complement of which it is
continuous.

Proposition 1.4 Suppose that f : 1 — R is a twice differentiable function. Then
(i) f issconvex if and only if f" > 0;

(i) f is strictly convex if and only if " > 0 and the set of points where f" vanishes does
not include intervals of positive length.

Next we need divided differences, commonly used when dealing with functions that
have different degree of smoothness.
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Definition 1.3 Let f: I — R, n € Ny and let xy,x1,. .., x, € I be mutually different points.
The n-th order divided difference of a function at xy, . .. , X, is defined recursively by
[‘xi;f]:f<xi)’ i:0,1,...,n,
o /1= b/l fxo) — f(x1)

[x0,x15f] = _
X0 — X1 X0 — X1
o f] = Borisfl=boxaifl )
X0 — X2
[x0,- . xnsf] = [x07~~~7xn71;ﬂ*[xl,...,xn;f}.

X0 — Xn

Remark 1.1 The value [xo,x;,x2; f] is independent of\the order of the points x, x; and
x. This definition may be extended to-include the case in which some or all the points
coincide. Namely, taking the limit x;— xg in (1.13), we get

7 (x0) = f(x2) = f'(x0) (xo — x2)

2 ,x27é-x0

lim [xo,x1,%2; f] = [X0yx0,%2;] =
X=X (xo — x2)

provided that /" exists, and furthermore, taking the limits x; — xq, i = 1,2 in (1.13), we
get
J" (x0)

lim lim [xo,x1,x2; f] = [x0,X0,%0; f] = ———=
X —X() X] —X( 2

provided that f” exists.

Definition 1.4 A function f : I — R is said to be n-convex (n € Ny) if for all\choices of
n+ 1 distinct points xo, ..., x, € I, the n-th order divided difference of f satisfies

o, a3 f] = 0. (1.14)

Thus the 1-convex functions are the nondecreasing functions, while the 2-convex functions
are precisely the classical convex functions.

Definition 1.5 A function f : I — (0,0) is called log-convex if

FUA=Ax+2y)s Fo'™ f () (1.15)
for all points x and y in I and all A € [0,1]:

If a function f : I — R is'log-convex, then it is also convex, which is a consequence of the
weighted AG-inequality.
We end this.section with the integral form of Jensen’s inequality.

Theorem.1.6 (INTEGRAL JENSEN’S INEQUALITY) Let (Q, 47, 1) be a finite measure
space, 0 < U(Q) < oo and let f: Q — I be a u-integrable function. If ¢ : I — R is convex
function, then next inequality holds

0 (ﬁ /Qfdu) < ﬁ/é(wf)du. (1.16)
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If @ is strictly convex, then in (1.16) we have equality if and only f is constant U-almost
everywhere on Q.

1.3 Exponential convexity

Following definitions and properties of exponentially convex functions comes from [28],
also [66]. Let I be an interval in R.

Definition 1.6 A function y: I = R is n-exponentially convex in the Jensen sense on I if

5, 86 (22 20

ioj=1

holds for all choicesié; e R andxy€ 1, i=1,...,n.
A function\yr; I — R is n-exponentially convex if it is n-exponentially convex in the
Jensen sense and continuous on I.

Remark.1.2 It is clear from the definition that 1 —exponentially convex functions in the
Jensen sense are in fact nonnegative functions. Also, n-exponentially convex functions in
the Jensen sense are k—exponentially convex in the Jensen sense for every k € N, k < n.

By definition of positive semi-definite matrices and some basic linear algebra we have
the following proposition.

Proposition 1.5 If y is an n-exponentially convex in the Jensen sense, then the matrix

k
[u/ (%)} is a positive semi-definite matrix for all k.€ N,k <'n. Particularly,
ij=1

k
Xi+X;
@{w<i34)] >0forallk €N, k<n.
i,j=1

Definition 1.7 A function y: I— R is'exponentially convex in the Jensen sense on I if it
is n-exponentially convex in the Jensen'sense for all n € N.

A function y: I — Riis exponentially convex if it is exponentially convex in the Jensen
sense and continuous:

Remark 1.3 Itis known (and easy to show) that y : I — (0, o) is log-convex in the Jensen
sense if and only if

y(x) +20By (%) () >0

holds for every o, B € R and x,y € I. It follows that a function is log-convex in the Jensen
sense if and only if it is 2—exponentially convex in the Jensen sense.

Also, using basic convexity theory it follows that a function is log-convex if and only
if it is 2—exponentially convex.
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One of the main features of exponentially convex functions is its integral representation
given by Bernstein ([32]) in the following theorem.

Theorem 1.7 The function y: I — R is exponentially convex on I if and only if

w(x) = [ o;e”‘dO'(t), xel

for some non-decreasing function o : R — R.

1.4 Opial-type inequalities

In 1960. Opial published an inequality involving integrals of a function and its derivative,
which now bear his name ([64]). Over the last five decades, an enormous amount of work
has been done on Opial’s inequality:_several simplifications of the original proof, various
extensions, generalizations and discrete analogues. More details can be found in the mono-
graph by Agarwal and Pang [5] which is dedicated to the theory of Opial-type inequalities
and its applications in theory of differential and difference equations. We observe Bee-
sack’s, Wirtinger’s, Willett’s, Godunova-Levin’s, Rozanova’s, Fink’s, Agarwal-Pang’s and
Alzer’s versions of Opial’s inequality.

Theorem 1.8 (OPIAL’S INEQUALITY) Let f € C'[0,h] be such that f(0) = f(h) = O.and
f(x) >0 forx e (0,h). then

/Oh|f(x>f’(x>|dxs Z/Oh [/ (0)) . (L17)

where constant h/4 is the best possible.
The novelty of Opial’s result is thus in establishing the best possible constant /1/4.

Example 1.4 1t is easy to construct the function which satisfy equality in (1.17). For
instance, let f be defined by

where ¢ > Q is arbitrary constant. Although this function is not derivable in t = /2, it could
be approximated.by the function belonging to C'[0, 4] that satisfy (1.17). Then constant
h/4 is the'best possible.

Opial’s inequality (1.17) holds even if function f” has discontinuity at 7 = h/2, pro-
vided that f is absolutely continuous on both of the subintervals [0,%] and [4,h], with
f(0) = f(h) = 0. Also, the positivity requirement of f on (0,4) is unnecessary, that is,
next Beesack’s inequality holds ([31]).
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Theorem 1.9 (BEESACK’S INEQUALITY) Let f € AC[0,h] be such that f(0) = 0. Then

/Oh |f(x) f(x) | dx < g/h [ ()] dx. (1.18)

0

Equality in (1.18) holds if and only if f(x) = cx, where c is a constant,

Theorem 1.10 (WIRTINGER’S INEQUALITY) Let f: [0,h] — R be such that ' & L,[0,h).
17£(0) = f(R) =0, then

/Oh Fo)Pdx < (%)z/oh 00 . (1.19)

Equality in (1.19) holds if and only if f(x)= csinZ*,\where c is a constant.

Remark 1.4 A weaker form of Opial’sin€équality can be obtained by combining Cauchy-
Schwarz-Buniakowski’s inequality and, Wirtinger’s inequality:

[\ forra) (1)’ < [ rwpa

Next inequality involving XM n>1,is given by Willett [75] (see also [5, p. 128]).

Theorem 1.11 (WILLETT’S INEQUALITY) Let x € C*[0, 4] be such that x\)(0) = 0, i =
0,...,n—1,n>1. Then

/Oh ‘x(t)x@)(t)‘dt < };—n/oh ‘x(”)(t)rdt. (1:20)

More generalizations and extensions of Willett’s inequality are done-by Boyd in [33].
Following generalization of Opial’s inequality is due to Godunova and Levin [46] (see
also [5, p. 74)).

Theorem 1.12 (GODUNOVA-LEVIN’S INEQUALITY) Let f bea convex and increasing
Sunction on [0,00) with f(0) = O, Further, let x be,absolutely continuous on |[a, 7] and
x(a) = 0. Then, the following inequality'holds

T T
[ GobrrE ([ woar). (1.21)
a a
An extension of the inequality (1.21) is embodied in the following inequality by Rozanova
[69] (see also [5, p-.82]).

Theorem 1.13 (ROZANOVA’S INEQUALITY) Let f, g be convex and increasing func-
tions on [0,e0) with f(0) =0, and let p(t) >0, p'(¢) > 0, ¢ € [a,T] with p(a) = 0. Further,
let x.be absolutely continuous on |a,t| and x(a) = 0. Then, the following inequality holds

/;p'(t)g <|;/’((tt))| > f (p(t)g ( |;(<?)|>) dt < f (/afp’(t)g ( |;l,((tt))| ) dt> . (122

Moreover, equality holds in (1.22) for the function x(t) = ¢ p(t).
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Remark 1.5 The condition in the two previous theorems that function f is to be increas-
ing is actually unneeded, and also, the condition g > 0 is missing in Theorem 1.13 (it can
be easily seen from proofs of the theorems).

Among inequalities of Opial-type, there is a class of inequality involving higher order
derivatives. First we have Fink’s inequality ([45]).

Theorem 1.14 (FINK’S INEQUALITY) Letq> 1, %Jr }l =1,n>2and0<i<j<n—M
Let f € AC™[0,h] be such that f(0) = f'(0) = --- = f"=1)(0) = 0 and f@) € L0, h]. Then

/h £ () 79 ()| < (/h el dx> %’ , (1.23)
0 0

where C = C(n, i, j,q) is given by

C=[20n—i= 1= )t p =) K Ep@n—i—j—D+27] . (1.24)

Inequality (1.23) is sharp for j'= i+, where equality in this case is achieved for q > 1
and function f such that
1

filx) = m/o (x—2)" ' (h—1)

Remark 1.6 Agarwal and Pang proved in [65] that Fink’s inequality does not hold for
i =Y, and that is not necessary to assume that f(k> (0)=0fork <.

r
q

(nfifl)dt.

Nextinequality is due to Agarwal and Pang ([65]).

Theorem 1.15 (AGARWAL-PANG’S INEQUALITY) Letn € N and f € AC"[0,h] be such
that f(0) = f'(0) = --- = f"=1(0) = 0. Let w, and w» be positive, measurable functions
on [0,h]. Letr; >0,i=0,....,n—1, andletrzzg’;olri. Let s; > 1 and i*}»si, =1 for

k
k=1,2, and q € R such that q > s,. Further, let

P </Oh [wz(x)]édx>s =,
0- (/Oh[wmx)ridx)%@.

/Ohwl (x) ]‘i If<f> (x)]ri dx LCH (/Oh wa (x) ‘f(") (x)"’ dx) é , (1.25)

|~

5N

Then

n—1
where p =Y Iri+or, [=n—i—1, o-zé_
i=0

‘ll, and C = C(”a{ri}awlaw2aslas27Q) is
given by
n—1 s

n—1 —riC

I 1
c< P||1!*’f —+1 21» o 1
<Q i:()() [G+} l ris| +ors) +

i=0

provided that integral on the right side in (1.25) exists.
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Alzer’s inequalities are given in [10, 11], where second one includes higher order
derivatives of two functions.

Theorem 1.16 (ALZER’S INEQUALITY 1) Letn € Nand f € C"[a,b] be such that f(a)=
fl(a)=---= fn=1) ( )=0. Let w be continuous, positive, decreasing function on-[a, b).
Letr; >0,i=0,....,n—1, andzl oti=1.Letp>1,q>0andc="1/(p+q). Then

b =1,
| v <,~Ho 70

where

(S (15 i) 1-o \'° 1 "
A=0¢% n—Nirn| (e [ .
1= o4 [” Z"’] (b-9) 1 [(n—i—a) i1

i=1 i=0

i>p)f(”>(x)‘qu§Al/ lf ’,, ! dx, (1.26)

Theorem 1.17 (ALZER’S INEQUALITY 2) Let p>0,q>0,r>landr>gq. Letn €N,
ke Ny, 0 <k <n—il, Let w; >0-and wy > 0 be measurable functions on [a,b]. Further,
let f,g € AC"[a,b] be such that f9(a) =gW(a) =0fori=0,...,n— 1 and let integrals
fab wa ()| A% ()| dx-and ff wa (x)|g"™ (x)|” dx exist. Then

[ [Js00] [0+ 000 g a
< A ( / s ) [|o@)| + g w] ] dx) - (127
where
= [(niﬂfm L@iqﬂ' [/f[wmx)ﬁwz(x)]%[sx o d"} R
s@) = L= R o) du,





