
Chapter1

General Linear Inequalities
for Sequences

In this chapter we prove several identities for sums  pkak,  pi jaib j involving finite for-
ward or backward differences of higher order. Using these identities we obtain necessary
and sufficient conditions under which the above-mentioned sums are nonnegative for dif-
ferent classes of sequences. We consider the classes of convex sequences of higher order,
-convex sequences of higher order, starshaped sequences, the class of p,q-convex se-
quences etc.

1.1 Convex Sequences of Higher Order

This section is devoted to an identity for the sum  pkak and to necessary and sufficient
conditions under which this sum is nonnegative for the class of convex sequences of higher
order. Let us define and discuss some basic concepts. For a real sequence a we usually
use notation (ai) or (ai)i=k when we want to stress that the first element is ak. Sometimes
under the word ”sequence” we mean n-tuple also, but it is always clear from the context.

The finite forward difference of a sequence a (or, simple, -difference) is defined as

1ai = ai := ai+1−ai,
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2 1 GENERAL LINEAR INEQUALITIES FOR SEQUENCES

while the difference of order m is defined as

mai := (m−1ai), m ∈ {2,3, . . .}.
Similarly, the finite backward difference (-difference) is defined as

1ai = ai := ai −ai+1,

and the -difference of order m as

mai := (m−1ai).

For m = 0 we put 0ai = ai, and 0ai = ai. It is easy to see that

mai =
m


k=0

(−1)m−k
(

m
k

)
ai+k.

We say that a sequence a is convex of order m or m-convex if

mai ≥ 0

holds for any i ∈ N. If m = 1, then a is nondecreasing, while if m = 2, then 2-convexity
becomes the classical convexity, i.e. the following holds

ai+2−2ai+1 +ai ≥ 0, i ∈ N.

We say that a sequence a is -convex of order m if

mai ≥ 0

holds for any i ∈ N.
Also, the following notation is frequently used: for some fixed real a and m ∈ N:

a(m) = a(a−1) · · ·(a−m+1), a(0) = 1.

In the following Lemma, proved in [61], we give an identity on which all the results
of this section are based. It can be observed as a generalization of the well-known Abel
identity for an n-tuple (a1, . . . ,an) with weights (p1, . . . , pn), [51, p.334], given by

n


i=1

piai = a1

n


i=1

pi +
n


i=2

(
n


k=i

pk

)
ai−1. (1.1)

The structure of the Abel identity can be described as following: the sum n
i=1 piai

is represented as a sum of two sums. In the first sum the difference of the order 0 of
element a1 occures, while in the second sum the differences of the order 1 for the elements
a1, . . . ,an−m occur. The Abel identity can be looked upon as a discrete analogue of the
formula for integration by parts. The new identity has a similar structure: the right-hand
side of it consists of two sums, in the first sum differences of order 0,1, . . . ,m− 1 of the
first element a1 appear, while in the second sum only the differences of order m occur but
for elements a1, . . . ,an−m.
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1.1 CONVEX SEQUENCES OF HIGHER ORDER 3

Lemma 1.1 Let m,n ∈ N, m < n. Let (p1, . . . , pn), (a1, . . . ,an) be real n-tuples. Then

n


i=1

piai =
m−1


k=0

n


i=1

pi(i−1)(k)
ka1

k!

+
n


k=m+1

(
n


i=k

pi(i− k+m−1)(m−1)

)
mak−m

(m−1)!
. (1.2)

Proof. We prove it by using mathematical induction on m. If m = 1, then we have

n


i=1

piai = a1

n


i=1

pi +
n


k=2

(
n


i=k

pi

)
ak−1,

which is, in fact, the Abel identity. Suppose that (1.2) is valid. Writting the Abel identity
for (n−m)-tuple (ma1,ma2, . . . ,man−m) with weights (Qm+1,Qm+2, . . . ,Qn), where

Qk =
n


i=k

(i− k+m−1)(m−1)pi

we get

n


k=m+1

Qkmak−m = ma1

n


j=m+1

Qj +
n


k=m+2

(
n


j=k

Qj

)
m+1ak−m−1.

The sum n
j=k Qj is equal to

n


j=k

Qj =
n


j=k

n


i= j

(i− j +m−1)(m−1)pi =
1
m

n


i=k

(i− k+m)(m)pi.

For k = m+1 we have

n


j=m+1

Qj =
1
m

n


j=m+1

( j−1)(m)p j =
1
m

n


j=1

( j−1)(m)p j,

where we use the fact that for j = 1, . . . ,m the number ( j−1)(m) is equal 0. So, we get

n


k=m+1

Qkmak−m

=
ma1

m

n


j=1

( j−1)(m)p j +
n


k=m+2

(
n


j=k

( j− k+m)(m)p j

)
m+1ak−m−1

m
. (1.3)

Let us write the right-hand side of identity (1.2) for m+1 instead of m:

m


k=0

n


i=1

pi(i−1)(k)
ka1

k!
+

n


k=m+2

(
n


i=k

pi(i− k+m)(m)

)
m+1ak−m−1

m!

       
  www.element.hr 

 
www.element.hr



4 1 GENERAL LINEAR INEQUALITIES FOR SEQUENCES

=

(
m−1


k=0

n


i=1

pi(i−1)(k)
ka1

k!
+

n


i=1

pi(i−1)(m)ma1

m!

)

+
1

(m−1)!

(
n


k=m+1

Qkmak−m −ma1
1
m

n


i=1

(i−1)(m)p1

)

=
m−1


k=0

n


i=1

pi(i−1)(k)
ka1

k!
+

n


k=m+1

(
n


i=k

pi(i− k+m−1)(m−1)

)
mak−m

(m−1)!

=
n


i=1

piai,

where we use (1.3) and the assumption of induction. So, by the principle of mathematical
induction, identity (1.2) holds. �

Remark 1.1 We use the above identity for m = n also. In that case the second sum
vanishes.

The following theorem about m-convex sequences is given in [61] by J. Pečarić (see also
[77, p. 253]):

Theorem 1.1 Let (p1, . . . , pn) be a real n-tuple and m ∈ N, m < n. The inequality

n


i=1

piai ≥ 0 (1.4)

holds for every m-convex n-tuple (ai) if and only if

n


i=1

(i−1)(k)pi = 0 (1.5)

holds for every k ∈ {0,1, . . . ,m−1} and

n


i=k

(i− k+m−1)(m−1)pi ≥ 0 (1.6)

holds for every k ∈ {m+1, . . . ,n}.
Proof. If equalities (1.5) and inequalities (1.6) are satisfied, then the first sum in identity

(1.2) is equal to 0, the second sum is nonnegative and the inequality n
i=1 piai ≥ 0 holds.

Conversely, let us suppose that n
i=1 piai ≥ 0 holds for any m-convex sequence (ai).

Since the sequence ai = (i−1)(k), i ∈ {1, . . . ,n} is m-convex for every k ∈ {0, . . . ,m−1},
we getn

i=1 pi(i−1)(k) ≥ 0. Convexity of the mentioned sequences are proved in Chapter 2
in detail. Similarly, since the sequence ai =−(i−1)(k), i∈ {1, . . . ,n} is m-convex for every
k ∈ {0, . . . ,m−1}, using (1.4) we get −n

i=1 pi(i−1)(k) ≥ 0. Hence, n
i=1 pi(i−1)(k) = 0.

Also the sequence

ai =

⎧⎨
⎩

0, i ∈ {1, . . . ,k−1},

(i− k+m−1)(m−1), i ∈ {k, . . . ,n},
(1.7)
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1.1 CONVEX SEQUENCES OF HIGHER ORDER 5

is m-convex for every k ∈ {m+1, . . . ,n}. Thus, by (1.4), we get (1.6). �

Remark 1.2 It is easy to see that condition (1.5) is equivalent to the following conditions:

n


i=1

(i−1)kpi = 0, k ∈ {0,1, . . . ,m−1} with 00 = 1 (1.8)

or
n


i=1

ik pi = 0, k ∈ {0,1, . . . ,m−1}. (1.9)

Also, it is instructive to observe that

(i−1)(k)

k!
=

(
i−1

k

)
,

(i− k+m−1)(m−1)

(m−1)!
=

(
i− k+m−1

m−1

)
.

In the first sum of (1.2) the numbers (i−1)(k) are equal 0 for i = 1, . . . ,k, so sometimes as
a range for i we use i from k+1 till n.

If an n-tuple (ai) is convex of several consecutive orders we have the following theorem
which is a consequence of Theorem 1.1. This result can be found in [71].

Theorem 1.2 Let (p1, . . . , pn) be a real n-tuple and m ∈ N, m < n, j ∈ {1, . . . ,m}. Then
inequality (1.4) holds for every n-tuple (a1, . . . ,an) that is convex of order j, j+1, . . . ,m if
and only if

n


i=1

(i−1)(k)pi = 0 (1.10)

holds for k ∈ {0,1, . . . , j−1},
n


i=1

(i−1)(k)pi ≥ 0 (1.11)

holds for k ∈ { j, j +1, . . . ,m−1} and

n


i=k

(i− k+m−1)(m−1)pi ≥ 0 (1.12)

holds for k ∈ {m+1, . . . ,n}.

Proof. If k ∈ {0,1, . . . , j− 1}, then the sequences ((i− 1)(k))i and (−(i− 1)(k))i are
convex of order j, j + 1, . . . ,m. So, for such k, n

i=1(i− 1)(k)pi = 0 holds. If k ∈ { j, j +
1, . . . ,m−1}, then the sequence ((i−1)(k))i is convex of order j, j+1, . . . ,m and n

i=1(i−
1)(k)pi ≥ 0 for such k.

Since the sequence (an) defined as in (1.7) is convex of order j, j +1, . . . ,m, so (1.12)
holds. This proves one implication of the theorem while the other follows from Lemma
1.1. �
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6 1 GENERAL LINEAR INEQUALITIES FOR SEQUENCES

A sequence (ai) is called absolutely monotonic of order m if all the lower order differ-
ences of that sequence are nonnegative, i.e. if

kai ≥ 0 for k ∈ {1,2, . . . ,m}.

As a consequence of the previous Theorem 1.2 we get the following necessary and suffi-
cient conditions for positivity of sum  piai for an absolutely monotonic sequence of order
m. Namely, we obtain the following theorem.

Corollary 1.1 Let (p1, . . . , pn) be a real n-tuple and m ∈N, m < n. Then inequality (1.4)
holds for every n-tuple (a1, . . . ,an) that is absolutely monotonic of order m if and only if

n


i=1

pi = 0,
n


i=1

(i−1)(k)pi ≥ 0

holds for k ∈ {1, . . . ,m−1}, and

n


i=k

(i− k+m−1)(m−1)pi ≥ 0 for k ∈ {m+1, . . . ,n}.

The following theorem describes how bounds for the sum  piai depend on bounds of
mak, (see [71]). In fact, using that result we can strengthen the initial inequality.

Theorem 1.3 Let m ∈ N, m < n and (a1, . . . ,an), (p1, . . . , pn) be real n-tuples such that

n


i=1

(i−1)(k)pi = 0 for k ∈ {0,1, . . . ,m−1} (1.13)

and
n


i=k

(i− k+m−1)(m−1)pi ≥ 0 for k ∈ {m+1, . . . ,n}. (1.14)

If
a ≤ mak ≤ A for k ∈ {1,2, . . . ,n−m}, (1.15)

then
a
m!

n


i=1

pii
(m) ≤

n


i=1

piai ≤ A
m!

n


i=1

pii
(m).

Proof. The sequences

bk = ak − a
m!

k(m) and ck =
A
m!

k(m) −ak

have the following properties

mbk = mak −a and mck = A−mak.
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1.1 CONVEX SEQUENCES OF HIGHER ORDER 7

By (1.15), we get that the sequences (bk) and (ck) are m-convex. Since (pk) satisfies
conditions (1.13) and (1.14), then using Theorem 1.1 we get that

n


i=1

pibi ≥ 0 and
n


i=1

pici ≥ 0

and desired inequalities hold. �

Remark 1.3 For a = −A condition (1.15) becomes |mak| ≤ A and then the statement of
the above theorem becomes ∣∣∣∣∣

n


i=1

piai

∣∣∣∣∣≤ A
m!

n


i=1

pii
(m).

Example 1.1 A nice application of Theorem 1.1 is a proof of the Nanson inequality. In
[52] E.J. Nanson proved the following inequality: If a real (2n+1)-tuple (a1, . . . ,a2n+1) is
convex, then

a1 +a3 + . . .+a2n+1

n+1
≥ a2 +a4 + . . .+a2n

n
. (1.16)

The original proof of the Nanson inequality (1.16) and some historical remarks are given
in [49, pp.202−203]. Here we give a proof of (1.16) based on Theorem 1.1.

Putting

N = 2n+1, p1 = p3 = . . . = p2n+1 =
1

n+1
, p2 = p4 = . . . = p2n = −1

n

we get

N


i=1

pi =
1

n+1
− 1

n
+ . . .+

1
n+1

− 1
n

+
1

n+1
= n

(
1

n+1
− 1

n

)
+

1
n+1

= 0,

N


i=1

(i−1)pi =
0

n+1
− 1

n
+

2
n+1

− 3
n

. . .+
2n−2
n+1

− 2n−1
n

+
2n

n+1

=
2+4+ . . .+2n

n+1
− 1+3+ . . .+2n−1

n
=

n(n+1)
n+1

− n2

n
= 0,

and for k ≥ 3

N


i=k

(i− k+1)pi = pk +2pk+1 +3pk+2 + . . .+(N− k+1)pN

=

⎧⎨
⎩

1
n+1 +

(− 2
n + 3

n+1

)
+

(− 4
n + 5

n+1

)
+ . . .

(−N−k
n + N−k+1

n+1

)
, k even(− 1

n + 2
n+1

)
+

(− 3
n + 4

n+1

)
+ . . .+

(−N−k
n + 3

N−k+1

)
, k odd
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8 1 GENERAL LINEAR INEQUALITIES FOR SEQUENCES

=

⎧⎪⎪⎨
⎪⎪⎩

(
N−k

2 +1
)(

n− N−k
2

)
n(n+1)

≥ 0, k even

1
n(n+1)

N− k+1
2

(
n− N− k+1

2

)
≥ 0, k odd.

Applying Theorem 1.1 for m = 2 we get that N
i=1 piai ≥ 0, i.e.

a1

n+1
− a2

n
+

a3

n+1
− a4

n
+ . . .

a2n−1

n+1
− a2n

n
+

a2n+1

n+1
≥ 0

which is the desired inequality (1.16).
Let us use Theorem 1.3 to get an estimate for the difference of the left-hand and the

right-hand side of the Nanson inequality if the second differences are bounded. This result
is proved in [3] using different approach.

Let us suppose that for sequence (ai) the following holds

a ≤ 2ak ≤ A, k ∈ {1,2, . . .2n−1}
for some a,A ∈ R. Then

2n+1
6

a ≤ a1 +a3 + . . .+a2n+1

n+1
− a2 +a4 + . . .+a2n

n
≤ 2n+1

6
A. (1.17)

From the previous calculation we have that (1.13) holds for k = 0,1 and (1.14) holds for
k = 2. Let us calculate N

i=1 pii(2).

N


i=1

pii
(2) =

N


i=1

pii
2−

N


i=1

pii =
N


i=1

pii
2

=
1

n+1
(12 +32 + . . .+(2n+1)2)+

1
n
(22 +42 + . . .+(2n)2)

=
2n+1

3
.

From that result we get (1.17).

Example 1.2 Let us illustrate an application of Theorem 1.1 to another inequality due to
N. Ozeki. In [55], and also in [49, p.199], the following result is given: If an−1+an+1 ≥ 2an

for n = 2,3, . . . , then
An−1 +An+1 ≥ 2An, n = 2,3, . . . , (1.18)

where
An =

a1 + . . .+an

n
.

In other words, if a sequence (ai) is convex, then the sequence (Ai) of arithmetic means is
also convex.

Putting

p1 = p2 = . . . = pn−1 =
1

n−1
+

1
n+1

− 2
n
, pn =

1
n+1

− 2
n
, pn+1 =

1
n+1

,
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1.1 CONVEX SEQUENCES OF HIGHER ORDER 9

we get
n+1


i=1

pi = 0,
n+1


i=1

(i−1)pi = 0,
n+1


i=k

(i− k+1)pi ≥ 0.

Using Theorem 1.1 for m = 2 we get that n+1
i=1 piai ≥ 0, i.e.

a1

(
1

n−1
+

1
n+1

− 2
n

)
+ . . .+an−1

(
1

n−1
+

1
n+1

− 2
n

)

+an

(
1

n+1
− 2

n

)
+

1
n+1

an+1 ≥ 0,

a1 +a2 + . . .+an−1

n−1
+

a1 +a2 + . . .+an+1

n+1
−2

a1 +a2 + . . .+an

n
≥ 0

which is the desired inequality (1.18).

Example 1.3 If (ai) is convex, then for any n ≥ 1

a1 +a3 + . . .+a2n+1 ≥ a2 +a4 + . . .+a2n +
a1 +a3 + . . .+a2n+1

n+1
. (1.19)

This inequality for ai = a is due to Steinig ([3, 92]).
To prove this, we use Theorem 1.1 for m = 2. Putting

N = 2n+1, p1 = p3 = . . . = p2n+1 =
n

n+1
, p2 = p4 = . . . = p2n = −1

we get that property (1.13) holds for k = 0,1 and (1.14) holds for k = 2. So, by Theorem
1.1 inequality (1.19) holds. Furthermore, if (ai) satisfies (1.13) for k = 0,1, (1.14) for
k = 2 and if a ≤ 2ak ≤ A (k = 1, . . . ,2n−1), then

n(2n+1)
6

a ≤ a1−a2 +a3− . . .+a2n+1− a1 +a3 + . . .+a2n+1

n+1
≤ n(2n+1)

6
A.

Let us again consider a basic identity from Lemma 1.1, with slightly modified indexing
in the first sum:

n


i=1

piai =
m


k=1

n


i=1

pi(i−1)(k−1) k−1a1

(k−1)!

+
n


k=m+1

(
n


i=k

pi(i− k+m−1)(m−1)

)
mak−m

(m−1)!
.

Putting p1 = . . . = pn−1 = 0 and pn = 1 we obtain the following ([79])

an =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m


k=1

(n−1)(k−1) k−1a1

(k−1)!

+
n


k=m+1

(n− k+m−1)(m−1) mak−m

(m−1)!
, m < n,

n


k=1

(n−1)(k−1) k−1a1

(k−1)!
, m = n.
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10 1 GENERAL LINEAR INEQUALITIES FOR SEQUENCES

The above-mentioned identity can be considered as the Taylor formula for sequences.
The following theorem was published in [62] and it gives results about preservation of

convexity of a sequence which is made from a sequence (ai).
Let (a0,a1,a2, . . .) be a real sequence and [pn,i], i = 0,1, . . . ,n; n = 0,1,2, . . . a lower

triangular matrix of real numbers, i.e.⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

p00 0 0 0 . . . 0 . . .
p10 p11 0 0 . . . 0 . . .
p20 p21 p22 0 . . . 0 . . .
...

...
...

pn0 pn1 pn2 pn3 . . . pnn 0 . . .
...

...
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Let (n) be a sequence defined as

n =
n


k=0

pn,n−kak, n = 0,1,2, . . . (1.20)

Theorem 1.4 Let n be defined as in (1.20) and s ∈ N. Then the implication

man ≥ 0 ⇒ sn ≥ 0

is valid for every sequence (an) if and only if

sXn(k+1,k) = 0 for k ∈ {0,1, . . . ,m−1}; n ∈ {0,1,2, . . .}
and

sXn(m,k) ≥ 0 for k ∈ {m, . . . ,n+ s}; n ∈ {0,1,2, . . .}
where

Xn(m,k) =

⎧⎪⎨
⎪⎩

0 for n < k
n−k


j=0

(
n− k+m−1− j

m−1

)
pn, j for n ≥ k. (1.21)

Proof. Let us write the difference sn as a linear combination of the elements a j.
Using the notation:

qn( j) =
{

0 for n < j
pn,n− j for n ≥ j

we get the following

n = n+1−n =
n+1


j=0

pn+1,n+1− ja j −
n


j=0

pn,n− ja j

=
n


j=0

(pn+1,n+1− j − pn,n− j)a j + pn+1,0an+1
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1.1 CONVEX SEQUENCES OF HIGHER ORDER 11

=
n


j=0

qn( j)a j +qn(n+1)an+1 =
n+1


j=0

qn( j)a j,

2n = n+1−n =
n+2


j=0

qn+1( j)a j −
n+1


j=0

qn( j)a j

=
n+1


j=0

(qn+1( j)−qn( j))a j +qn+1(n+2)an+1

=
n+2


j=0

2qn( j)a j.

Similarly, we get

sn =
n+s


j=0

sqn( j)a j for every s (1.22)

and

sXn(m,k) =
n+s


i=k

(
i− k+m−1

m−1

)
sqn(i).

Writting identity (1.2) for n+ s+1-tuples (a0,a1, . . . ,an+s) and
(sqn(0),sqn(1), . . . ,sqn(n+ s)) and using the above results we get the identity

sn =
m−1


k=0

ka0 sXn(k+1,k)+
n+s


k=m

mak−m sXn(m,k). (1.23)

Hence, the statement follows from Theorem 1.1. �

Theorem 1.4 is a generalization of several previously published results. Firstly, in [56]
N. Ozeki obtained conditions on a matrix [pn,i] implying that for each convex sequence (an)
the sequence (n) is also convex, i.e. it is a particular case of Theorem 1.4 for m = s = 2.
One decade later a particular case of Theorem 1.4 for m = s was published in [34] and [41].

A result which is based on identity (1.23) is given as the following theorem, [62].

Theorem 1.5 Let (an) be a real sequence and let n be defined as in (1.20). If |man| ≤N
for n ∈ {0,1,2, . . .}, and

sXn(k+1,k) = 0 for k ∈ {0,1, . . . ,m−1}; n ∈ {0,1,2, . . .} (1.24)

where Xn(m,k) is given in (1.21), then

|sn| ≤ N
n+s


k=m

|sXn(m,k)|.

Proof. This is an immediate consequence of (1.23). �

The following theorem also gives a bounds for sn, (see [71]).

       
  www.element.hr 

 
www.element.hr




