General Linear Inequalities for Sequences

Chapter

In this chapter we prove several identities for sums $\sum p_k a_k$, $\sum p_{ij} a_i b_j$ involving finite forward or backward differences of higher order. Using these identities we obtain necessary and sufficient conditions under which the above-mentioned sums are nonnegative for different classes of sequences. We consider the classes of convex sequences of higher order, ∇ -convex sequences of higher order, starshaped sequences, the class of p,q-convex sequences etc.

1.1 Convex Sequences of Higher Order

This section is devoted to an identity for the sum $\sum p_k a_k$ and to necessary and sufficient conditions under which this sum is nonnegative for the class of convex sequences of higher order. Let us define and discuss some basic concepts. For a real sequence **a** we usually use notation (a_i) or $(a_i)_{i=k}^{\infty}$ when we want to stress that the first element is a_k . Sometimes under the word "sequence" we mean *n*-tuple also, but it is always clear from the context.

The finite forward difference of a sequence **a** (or, simple, Δ -difference) is defined as

$$\Delta^1 a_i = \Delta a_i := a_{i+1} - a_i,$$

while the difference of order m is defined as

$$\Delta^m a_i := \Delta(\Delta^{m-1}a_i), \ m \in \{2,3,\ldots\}.$$

Similarly, the finite backward difference (∇ -difference) is defined as

$$\nabla^1 a_i = \nabla a_i := a_i - a_{i+1},$$

and the ∇ -difference of order *m* as

$$\nabla^m a_i := \nabla(\nabla^{m-1} a_i).$$

For m = 0 we put $\Delta^0 a_i = a_i$, and $\nabla^0 a_i = a_i$. It is easy to see that

$$\Delta^{m} a_{i} = \sum_{k=0}^{m} (-1)^{m-k} \binom{m}{k} a_{i+k}.$$

We say that a sequence **a** is convex of order *m* or *m*-convex if

$$\Delta^m a_i \ge 0$$

holds for any $i \in \mathbb{N}$. If m = 1, then **a** is nondecreasing, while if m = 2, then 2-convexity becomes the classical convexity, i.e. the following holds

$$a_{i+2} - 2a_{i+1} + a_i \ge 0, \ i \in \mathbb{N}.$$

We say that a sequence **a** is ∇ -convex of order *m* if

$$\nabla^m a_i \geq 0$$

holds for any $i \in \mathbb{N}$.

Also, the following notation is frequently used: for some fixed real *a* and $m \in \mathbb{N}$:

$$a^{(m)} = a(a-1)\cdots(a-m+1), \quad a^{(0)} = 1.$$

In the following Lemma, proved in [61], we give an identity on which all the results of this section are based. It can be observed as a generalization of the well-known Abel identity for an *n*-tuple (a_1, \ldots, a_n) with weights (p_1, \ldots, p_n) , [51, p.334], given by

$$\sum_{i=1}^{n} p_{i}a_{i} = a_{1}\sum_{i=1}^{n} p_{i} + \sum_{i=2}^{n} \left(\sum_{k=i}^{n} p_{k}\right) \Delta a_{i-1}.$$
(1.1)

The structure of the Abel identity can be described as following: the sum $\sum_{i=1}^{n} p_i a_i$ is represented as a sum of two sums. In the first sum the difference of the order 0 of element a_1 occures, while in the second sum the differences of the order 1 for the elements a_1, \ldots, a_{n-m} occur. The Abel identity can be looked upon as a discrete analogue of the formula for integration by parts. The new identity has a similar structure: the right-hand side of it consists of two sums, in the first sum differences of order $0, 1, \ldots, m-1$ of the first element a_1 appear, while in the second sum only the differences of order *m* occur but for elements a_1, \ldots, a_{n-m} .

Lemma 1.1 Let $m, n \in \mathbb{N}$, m < n. Let (p_1, \ldots, p_n) , (a_1, \ldots, a_n) be real n-tuples. Then

$$\sum_{i=1}^{n} p_{i}a_{i} = \sum_{k=0}^{m-1} \sum_{i=1}^{n} p_{i}(i-1)^{(k)} \frac{\Delta^{k}a_{1}}{k!} + \sum_{k=m+1}^{n} \left(\sum_{i=k}^{n} p_{i}(i-k+m-1)^{(m-1)}\right) \frac{\Delta^{m}a_{k-m}}{(m-1)!}.$$
(1.2)

Proof. We prove it by using mathematical induction on *m*. If m = 1, then we have

$$\sum_{i=1}^{n} p_i a_i = a_1 \sum_{i=1}^{n} p_i + \sum_{k=2}^{n} \left(\sum_{i=k}^{n} p_i \right) \Delta a_{k-1},$$

which is, in fact, the Abel identity. Suppose that (1.2) is valid. Writting the Abel identity for (n-m)-tuple $(\Delta^m a_1, \Delta^m a_2, \dots, \Delta^m a_{n-m})$ with weights $(Q_{m+1}, Q_{m+2}, \dots, Q_n)$, where

$$Q_{k} = \sum_{i=k}^{n} (i - k + m - 1)^{(m-1)} p_{i}$$

we get
$$\sum_{k=m+1}^{n} Q_{k} \Delta^{m} a_{k-m} = \Delta^{m} a_{1} \sum_{j=m+1}^{n} Q_{j} + \sum_{k=m+2}^{n} \left(\sum_{j=k}^{n} Q_{j} \right) \Delta^{m+1} a_{k-m-1}$$

The sum $\sum_{j=k}^{n} Q_j$ is equal to

$$\sum_{j=k}^{n} Q_j = \sum_{j=k}^{n} \sum_{i=j}^{n} (i-j+m-1)^{(m-1)} p_i = \frac{1}{m} \sum_{i=k}^{n} (i-k+m)^m$$

For k = m + 1 we have

$$\sum_{j=m+1}^{n} Q_j = \frac{1}{m} \sum_{j=m+1}^{n} (j-1)^{(m)} p_j = \frac{1}{m} \sum_{j=1}^{n} (j-1)^{(m)} p_j,$$

where we use the fact that for j = 1, ..., m the number $(j-1)^{(m)}$ is equal 0. So, we get

$$\sum_{k=0}^{m} \sum_{i=1}^{n} p_i (i-1)^{(k)} \frac{\Delta^k a_1}{k!} + \sum_{k=m+2}^{n} \left(\sum_{i=k}^{n} p_i (i-k+m)^{(m)} \right) \frac{\Delta^{m+1} a_{k-m-1}}{m!}$$

$$= \left(\sum_{k=0}^{m-1} \sum_{i=1}^{n} p_i (i-1)^{(k)} \frac{\Delta^k a_1}{k!} + \sum_{i=1}^{n} p_i (i-1)^{(m)} \frac{\Delta^m a_1}{m!}\right) \\ + \frac{1}{(m-1)!} \left(\sum_{k=m+1}^{n} Q_k \Delta^m a_{k-m} - \Delta^m a_1 \frac{1}{m} \sum_{i=1}^{n} (i-1)^{(m)} p_1\right) \\ = \sum_{k=0}^{m-1} \sum_{i=1}^{n} p_i (i-1)^{(k)} \frac{\Delta^k a_1}{k!} + \sum_{k=m+1}^{n} \left(\sum_{i=k}^{n} p_i (i-k+m-1)^{(m-1)}\right) \frac{\Delta^m a_{k-m}}{(m-1)!} \\ = \sum_{i=1}^{n} p_i a_i,$$

where we use (1.3) and the assumption of induction. So, by the principle of mathematical induction, identity (1.2) holds.

Remark 1.1 We use the above identity for m = n also. In that case the second sum vanishes.

The following theorem about *m*-convex sequences is given in [61] by J. Pečarić (see also [77, p. 253]):

 $(..., p_n)$ be a real n-tuple and $m \in \mathbb{N}$, m < n. The inequality Theorem 1.1

$$\sum_{i=1}^{n} p_i a_i \ge 0 \tag{1.4}$$

holds for every m-convex n-tuple (a_i) if and only if

$$\sum_{i=1}^{n} (i-1)^{(k)} p_i = 0$$

holds for every $k \in \{0, 1, ..., m-1\}$ *and*

$$\sum_{i=k}^{n} (i-k+m-1)^{(m-1)} p_i \ge 0 \tag{1.6}$$

holds for every $k \in \{m+1, \ldots, n\}$.

Proof. If equalities (1.5) and inequalities (1.6) are satisfied, then the first sum in identity (1.2) is equal to 0, the second sum is nonnegative and the inequality $\sum_{i=1}^{n} p_i a_i \ge 0$ holds.

Conversely, let us suppose that $\sum_{i=1}^{n} p_i a_i \ge 0$ holds for any *m*-convex sequence (a_i) . Since the sequence $a_i = (i-1)^{(k)}, i \in \{1, ..., n\}$ is *m*-convex for every $k \in \{0, ..., m-1\}$, we get $\sum_{i=1}^{n} p_i (i-1)^{(k)} \ge 0$. Convexity of the mentioned sequences are proved in Chapter 2 in detail. Similarly, since the sequence $a_i = -(i-1)^{(k)}$, $i \in \{1, ..., n\}$ is *m*-convex for every $k \in \{0, ..., m-1\}$, using (1.4) we get $-\sum_{i=1}^n p_i(i-1)^{(k)} \ge 0$. Hence, $\sum_{i=1}^n p_i(i-1)^{(k)} = 0$.

$$a_{i} = \begin{cases} 0, & i \in \{1, \dots, k-1\}, \\ (i-k+m-1)^{(m-1)}, & i \in \{k, \dots, n\}, \end{cases}$$
(1.7)

is *m*-convex for every $k \in \{m+1,\ldots,n\}$. Thus, by (1.4), we get (1.6).

Remark 1.2 It is easy to see that condition (1.5) is equivalent to the following conditions:

$$\sum_{i=1}^{n} (i-1)^{k} p_{i} = 0, \ k \in \{0, 1, \dots, m-1\} \text{ with } 0^{0} = 1$$
(1.8)

or

$$\sum_{i=1}^{n} i^{k} p_{i} = 0, \ k \in \{0, 1, \dots, m-1\}.$$
(1.9)

Also, it is instructive to observe that

$$\frac{(i-1)^{(k)}}{k!} = \binom{i-1}{k}, \quad \frac{(i-k+m-1)^{(m-1)}}{(m-1)!} = \binom{i-k+m-1}{m-1}.$$

In the first sum of (1.2) the numbers $(i-1)^{(k)}$ are equal 0 for i = 1, ..., k, so sometimes as a range for *i* we use *i* from k + 1 till *n*.

If an *n*-tuple (a_i) is convex of several consecutive orders we have the following theorem which is a consequence of Theorem 1.1. This result can be found in [71].

Theorem 1.2 Let (p_1, \ldots, p_n) be a real n-tuple and $m \in \mathbb{N}$, m < n, $j \in \{1, \ldots, m\}$. Then inequality (1.4) holds for every n-tuple (a_1, \ldots, a_n) that is convex of order $j, j+1, \ldots, m$ if and only if

$$\sum_{i=1}^{n} (i-1)^{(k)} p_i = 0$$
(1.10)
holds for $k \in \{0, 1, \dots, j-1\}$,
$$\sum_{i=1}^{n} (i-1)^{(k)} p_i \ge 0$$
(1.11)
holds for $k \in \{j, j+1, \dots, m-1\}$ and
$$n$$

holds

$$\sum_{k} (i-k+m-1)^{(m-1)} p_i \ge 0 \tag{1.12}$$

holds for $k \in \{m + 1, ..., n\}$ *.*

Proof. If $k \in \{0, 1, \dots, j-1\}$, then the sequences $((i-1)^{(k)})_i$ and $(-(i-1)^{(k)})_i$ are convex of order $j, j+1, \dots, m$. So, for such k, $\sum_{i=1}^n (i-1)^{(k)} p_i = 0$ holds. If $k \in \{j, j+1, \dots, m-1\}$, then the sequence $((i-1)^{(k)})_i$ is convex of order $j, j+1, \dots, m$ and $\sum_{i=1}^n (i-1)^{(k)} p_i = 0$. 1)^(k) $p_i \ge 0$ for such k.

Since the sequence (a_n) defined as in (1.7) is convex of order j, j + 1, ..., m, so (1.12) holds. This proves one implication of the theorem while the other follows from Lemma 1.1.

A sequence (a_i) is called absolutely monotonic of order *m* if all the lower order differences of that sequence are nonnegative, i.e. if

$$\Delta^k a_i \ge 0$$
 for $k \in \{1, 2, ..., m\}$.

As a consequence of the previous Theorem 1.2 we get the following necessary and sufficient conditions for positivity of sum $\sum p_i a_i$ for an absolutely monotonic sequence of order *m*. Namely, we obtain the following theorem.

Corollary 1.1 Let $(p_1, ..., p_n)$ be a real *n*-tuple and $m \in \mathbb{N}$, m < n. Then inequality (1.4) holds for every *n*-tuple $(a_1, ..., a_n)$ that is absolutely monotonic of order *m* if and only if

$$\sum_{i=1}^{n} p_i = 0, \ \sum_{i=1}^{n} (i-1)^{(k)} p_i \ge 0$$

holds for $k \in \{1, \ldots, m-1\}$, and

$$\sum_{i=k}^{n} (i-k+m-1)^{(m-1)} p_i \ge 0 \text{ for } k \in \{m+1,\ldots,n\}.$$

The following theorem describes how bounds for the sum $\sum p_i a_i$ depend on bounds of $\Delta^m a_k$, (see [71]). In fact, using that result we can strengthen the initial inequality.

Theorem 1.3 Let $m \in \mathbb{N}$, m < n and (a_1, \ldots, a_n) , (p_1, \ldots, p_n) be real *n*-tuples such that

$$\sum_{i=1}^{n} (i-1)^{(k)} p_i = 0 \text{ for } k \in \{0, 1, \dots, m-1\}$$

and

$$\sum_{i=k}^{n} (i-k+m-1)^{(m-1)} p_i \ge 0 \text{ for } k \in \{m+1,\dots,n\}.$$
(1.14)

If

$$a \leq \Delta^m a_k \leq A f$$

(1.15)

(1.13)

then

$$\frac{a}{m!} \sum_{i=1}^{n} p_i i^{(m)} \le \sum_{i=1}^{n} p_i a_i \le \frac{A}{m!} \sum_{i=1}^{n} p_i i^{(m)}.$$

Proof. The sequences

$$b_k = a_k - \frac{a}{m!} k^{(m)}$$
 and $c_k = \frac{A}{m!} k^{(m)} - a_k$

have the following properties

$$\Delta^m b_k = \Delta^m a_k - a \text{ and } \Delta^m c_k = A - \Delta^m a_k.$$

By (1.15), we get that the sequences (b_k) and (c_k) are *m*-convex. Since (p_k) satisfies conditions (1.13) and (1.14), then using Theorem 1.1 we get that

$$\sum_{i=1}^n p_i b_i \ge 0 \text{ and } \sum_{i=1}^n p_i c_i \ge 0$$

and desired inequalities hold.

Remark 1.3 For a = -A condition (1.15) becomes $|\Delta^m a_k| \le A$ and then the statement of the above theorem becomes

Example 1.1 A nice application of Theorem 1.1 is a proof of the Nanson inequality. In [52] E.J. Nanson proved the following inequality: If a real (2n+1)-tuple (a_1, \ldots, a_{2n+1}) is convex, then

$$\frac{a_1 + a_3 + \ldots + a_{2n+1}}{n+1} \ge \frac{a_2 + a_4 + \ldots + a_{2n}}{n}.$$
(1.16)

The original proof of the Nanson inequality (1.16) and some historical remarks are given in [49, pp.202 - 203]. Here we give a proof of (1.16) based on Theorem 1.1. Putting

$$N = 2n + 1, p_1 = p_3 = \ldots = p_{2n+1} = \frac{1}{n+1}, p_2 = p_4 = \ldots = p_{2n} = -\frac{1}{n}$$

we get

$$\sum_{i=1}^{N} p_i = \frac{1}{n+1} - \frac{1}{n} + \ldots + \frac{1}{n+1} - \frac{1}{n} + \frac{1}{n+1} = n\left(\frac{1}{n+1} - \frac{1}{n}\right) + \frac{1}{n+1} = 0,$$

$$\sum_{i=1}^{N} (i-1)p_i = \frac{0}{n+1} - \frac{1}{n} + \frac{2}{n+1} - \frac{3}{n} \dots + \frac{2n-2}{n+1} - \frac{2n-1}{n} + \frac{2n}{n+1}$$
$$= \frac{2+4+\dots+2n}{n+1} - \frac{1+3+\dots+2n-1}{n} = \frac{n(n+1)}{n+1} - \frac{n^2}{n} = 0,$$

and for $k \ge 3$

$$\sum_{i=k}^{N} (i-k+1)p_i = p_k + 2p_{k+1} + 3p_{k+2} + \dots + (N-k+1)p_N$$

=
$$\begin{cases} \frac{1}{n+1} + \left(-\frac{2}{n} + \frac{3}{n+1}\right) + \left(-\frac{4}{n} + \frac{5}{n+1}\right) + \dots \left(-\frac{N-k}{n} + \frac{N-k+1}{n+1}\right), & k \text{ even} \\ \left(-\frac{1}{n} + \frac{2}{n+1}\right) + \left(-\frac{3}{n} + \frac{4}{n+1}\right) + \dots + \left(-\frac{N-k}{n} + \frac{3}{N-k+1}\right), & k \text{ odd} \end{cases}$$

$$= \begin{cases} \frac{\left(\frac{N-k}{2}+1\right)\left(n-\frac{N-k}{2}\right)}{n(n+1)} \ge 0, \ k \text{ even} \\ \frac{1}{n(n+1)} \frac{N-k+1}{2}\left(n-\frac{N-k+1}{2}\right) \ge 0, \ k \text{ odd.} \end{cases}$$

Applying Theorem 1.1 for m = 2 we get that $\sum_{i=1}^{N} p_i a_i \ge 0$, i.e.

$$\frac{a_1}{n+1} - \frac{a_2}{n} + \frac{a_3}{n+1} - \frac{a_4}{n} + \dots + \frac{a_{2n-1}}{n+1} - \frac{a_{2n}}{n} + \frac{a_{2n+1}}{n+1} \ge 0$$

which is the desired inequality (1.16).

Let us use Theorem 1.3 to get an estimate for the difference of the left-hand and the right-hand side of the Nanson inequality if the second differences are bounded. This result is proved in [3] using different approach.

Let us suppose that for sequence (a_i) the following holds

$$a \leq \Delta^2 a_k \leq A, \ k \in \{1, 2, \dots 2n-1\}$$

for some $a, A \in \mathbf{R}$. Then

$$\frac{2n+1}{6}a \le \frac{a_1+a_3+\ldots+a_{2n+1}}{n+1} - \frac{a_2+a_4+\ldots+a_{2n}}{n} \le \frac{2n+1}{6}A.$$
 (1.17)

From the previous calculation we have that (1.13) holds for k = 0, 1 and (1.14) holds for k = 2. Let us calculate $\sum_{i=1}^{N} p_i i^{(2)}$.

$$\sum_{i=1}^{N} p_i i^{(2)} = \sum_{i=1}^{N} p_i i^2 - \sum_{i=1}^{N} p_i i = \sum_{i=1}^{N} p_i i^2$$

= $\frac{1}{n+1} (1^2 + 3^2 + \dots + (2n+1)^2) + \frac{1}{n} (2^2 + 4^2 + \dots + (2n)^2)$
= $\frac{2n+1}{3}$.

From that result we get (1.17).

Example 1.2 Let us illustrate an application of Theorem 1.1 to another inequality due to N. Ozeki. In [55], and also in [49, *p*.199], the following result is given: If $a_{n-1} + a_{n+1} \ge 2a_n$ for n = 2, 3, ..., then

$$A_{n-1} + A_{n+1} \ge 2A_n, \ n = 2, 3, \dots,$$
 (1.18)
 $A_n = \frac{a_1 + \dots + a_n}{n}.$

where

In other words, if a sequence (a_i) is convex, then the sequence (A_i) of arithmetic means is also convex.

Putting

$$p_1 = p_2 = \ldots = p_{n-1} = \frac{1}{n-1} + \frac{1}{n+1} - \frac{2}{n}, \ p_n = \frac{1}{n+1} - \frac{2}{n}, \ p_{n+1} = \frac{1}{n+1},$$

we get

$$\sum_{i=1}^{n+1} p_i = 0, \ \sum_{i=1}^{n+1} (i-1)p_i = 0, \ \sum_{i=k}^{n+1} (i-k+1)p_i \ge 0.$$

Using Theorem 1.1 for m = 2 we get that $\sum_{i=1}^{n+1} p_i a_i \ge 0$, i.e.

$$a_{1}\left(\frac{1}{n-1} + \frac{1}{n+1} - \frac{2}{n}\right) + \dots + a_{n-1}\left(\frac{1}{n-1} + \frac{1}{n+1} - \frac{2}{n}\right) + a_{n}\left(\frac{1}{n+1} - \frac{2}{n}\right) + \frac{1}{n+1}a_{n+1} \ge 0,$$

$$\frac{a_{1} + a_{2} + \dots + a_{n-1}}{n-1} + \frac{a_{1} + a_{2} + \dots + a_{n+1}}{n+1} - 2\frac{a_{1} + a_{2} + \dots + a_{n}}{n} \ge 0$$

which is the desired inequality (1.18).

Example 1.3 If (a_i) is convex, then for any $n \ge 1$

$$a_1 + a_3 + \ldots + a_{2n+1} \ge a_2 + a_4 + \ldots + a_{2n} + \frac{a_1 + a_3 + \ldots + a_{2n+1}}{n+1}.$$
 (1.19)

This inequality for $a_i = a$ is due to Steinig ([3, 92]).

To prove this, we use Theorem 1.1 for m = 2. Putting

$$N = 2n + 1, p_1 = p_3 = \dots = p_{2n+1} = \frac{n}{n+1}, p_2 = p_4 = \dots = p_{2n} = -1$$

we get that property (1.13) holds for k = 0, 1 and (1.14) holds for k = 2. So, by Theorem 1.1 inequality (1.19) holds. Furthermore, if (a_i) satisfies (1.13) for k = 0, 1, (1.14) for k = 2 and if $a \le \Delta^2 a_k \le A$ (k = 1, ..., 2n - 1), then

$$\frac{n(2n+1)}{6}a \le a_1 - a_2 + a_3 - \ldots + a_{2n+1} - \frac{a_1 + a_3 + \ldots + a_{2n+1}}{n+1} \le \frac{n(2n+1)}{6}A.$$

Let us again consider a basic identity from Lemma 1.1, with slightly modified indexing in the first sum:

$$\sum_{i=1}^{n} p_{i}a_{i} = \sum_{k=1}^{m} \sum_{i=1}^{n} p_{i}(i-1)^{(k-1)} \frac{\Delta^{k-1}a_{1}}{(k-1)!} + \sum_{k=m+1}^{n} \left(\sum_{i=k}^{n} p_{i}(i-k+m-1)^{(m-1)}\right) \frac{\Delta^{m}a_{k-m}}{(m-1)!}$$

Putting $p_1 = \ldots = p_{n-1} = 0$ and $p_n = 1$ we obtain the following ([79])

$$a_n = \begin{cases} \sum_{k=1}^m (n-1)^{(k-1)} \frac{\Delta^{k-1} a_1}{(k-1)!} \\ + \sum_{k=m+1}^n (n-k+m-1)^{(m-1)} \frac{\Delta^m a_{k-m}}{(m-1)!}, & m < n, \\ \\ \sum_{k=1}^n (n-1)^{(k-1)} \frac{\Delta^{k-1} a_1}{(k-1)!}, & m = n. \end{cases}$$

The above-mentioned identity can be considered as the Taylor formula for sequences.

The following theorem was published in [62] and it gives results about preservation of convexity of a sequence which is made from a sequence (a_i) .

Let $(a_0, a_1, a_2, ...)$ be a real sequence and $[p_{n,i}], i = 0, 1, ..., n; n = 0, 1, 2, ...$ a lower triangular matrix of real numbers, i.e.

 $\begin{bmatrix} p_{00} & 0 & 0 & 0 & \dots & 0 & \dots \\ p_{10} & p_{11} & 0 & 0 & \dots & 0 & \dots \\ p_{20} & p_{21} & p_{22} & 0 & \dots & 0 & \dots \\ \vdots & \vdots & \vdots & & & & \\ p_{n0} & p_{n1} & p_{n2} & p_{n3} & \dots & p_{nn} & 0 \dots \\ \vdots & \vdots & \vdots & & & \\ \end{bmatrix}$

Let (σ_n) be a sequence defined as

$$\sigma_n = \sum_{k=0}^n p_{n,n-k} a_k, \ n = 0, 1, 2, \dots$$
 (1.20)

Theorem 1.4 Let σ_n be defined as in (1.20) and $s \in \mathbb{N}$. Then the implication

$$\Delta^m a_n \ge 0 \Rightarrow \Delta^s \sigma_n \ge 0$$

is valid for every sequence (a_n) if and only if

 $\Delta^{s} X_{n}(k+1,k) = 0 \quad for \quad k \in \{0,1,\ldots,m-1\}; \quad n \in \{0,1,2,\ldots\}$

and

$$\Delta^{s} X_{n}(m,k) \geq 0$$
 for $k \in \{m, \dots, n+s\};$ $n \in \{0, 1, 2, \dots\}$

where

$$X_n(m,k) = \begin{cases} 0 & \text{for } n < k \\ \sum_{j=0}^{n-k} \binom{n-k+m-1-j}{m-1} p_{n,j} & \text{for } n \ge k. \end{cases}$$
(1.21)

Proof. Let us write the difference $\Delta^s \sigma_n$ as a linear combination of the elements a_j . ng the notation: Using the notation:

$$q_n(j) = \begin{cases} 0 & \text{for } n < j \\ p_{n,n-j} & \text{for } n \ge j \end{cases}$$

we get the following

$$\Delta \sigma_n = \sigma_{n+1} - \sigma_n = \sum_{j=0}^{n+1} p_{n+1,n+1-j}a_j - \sum_{j=0}^n p_{n,n-j}a_j$$
$$= \sum_{j=0}^n (p_{n+1,n+1-j} - p_{n,n-j})a_j + p_{n+1,0}a_{n+1}$$

$$= \sum_{j=0}^{n} \Delta q_n(j) a_j + \Delta q_n(n+1) a_{n+1} = \sum_{j=0}^{n+1} \Delta q_n(j) a_j,$$

$$\Delta^2 \sigma_n = \Delta \sigma_{n+1} - \Delta \sigma_n = \sum_{j=0}^{n+2} \Delta q_{n+1}(j) a_j - \sum_{j=0}^{n+1} \Delta q_n(j) a_j$$

$$= \sum_{j=0}^{n+1} \Delta (q_{n+1}(j) - q_n(j)) a_j + \Delta q_{n+1}(n+2) a_{n+1}$$

$$= \sum_{j=0}^{n+2} \Delta^2 q_n(j) a_j.$$
Similarly, we get
$$\Delta^s \sigma_n = \sum_{j=0}^{n+s} \Delta^s q_n(j) a_j \text{ for every } s \qquad (1.22)$$
and
$$\Delta^s X_n(m,k) = \sum_{j=0}^{n+s} \binom{i-k+m-1}{m-1} \Delta^s q_n(i).$$

and

Writting identity (1.2) for n + s + 1-tuples $(a_0, a_1, \dots, a_{n+s})$ and $(\Delta^{s}q_{n}(0), \Delta^{s}q_{n}(1), \dots, \Delta^{s}q_{n}(n+s))$ and using the above results we get the identity

$$\Delta^{s}\sigma_{n} = \sum_{k=0}^{m-1} \Delta^{k}a_{0} \,\Delta^{s}X_{n}(k+1,k) + \sum_{k=m}^{n+s} \Delta^{m}a_{k-m} \,\Delta^{s}X_{n}(m,k).$$
(1.23)

Hence, the statement follows from Theorem 1.1.

Theorem 1.4 is a generalization of several previously published results. Firstly, in [56] N. Ozeki obtained conditions on a matrix $[p_{n,i}]$ implying that for each convex sequence (a_n) the sequence (σ_n) is also convex, i.e. it is a particular case of Theorem 1.4 for m = s = 2. One decade later a particular case of Theorem 1.4 for m = s was published in [34] and [41].

A result which is based on identity (1.23) is given as the following theorem, [62].

Theorem 1.5 Let (a_n) be a real sequence and let σ_n be defined as in (1.20). If $|\Delta^m a_n| \leq N$ for $n \in \{0, 1, 2, ...\}$, and

$$\Delta^{s} X_{n}(k+1,k) = 0 \quad for \quad k \in \{0,1,\ldots,m-1\}; \quad n \in \{0,1,2,\ldots\}$$
(1.24)

where $X_n(m,k)$ is given in (1.21), then

$$|\Delta^s \sigma_n| \leq N \sum_{k=m}^{n+s} |\Delta^s X_n(m,k)|.$$

Proof. This is an immediate consequence of (1.23).

The following theorem also gives a bounds for $\Delta^s \sigma_n$, (see [71]).

11