General Linear Inequalities for Sequences

In this chapter we prove several identities for sums $\sum p_{k} a_{k}, \sum p_{i j} a_{i} b_{j}$ involving finite forward or backward differences of higher order. Using these identities we obtain necessary and sufficient conditions under which the above-mentioned sums are nonnegative for different classes of sequences. We consider the classes of convex sequences of higher order, ∇-convex sequences of higher order, starshaped sequences, the class of p, q-convex sequences etc.

1.1 Convex Sequences of Higher Order

This section is devoted to an identity for the sum $\sum p_{k} a_{k}$ and to necessary and sufficient conditions under which this sum is nonnegative for the class of convex sequences of higher order Let us define and discuss some basic concepts. For a real sequence a we usually use notation $\left(a_{i}\right)$ or $\left(a_{i}\right)_{i=k}^{\infty}$ when we want to stress that the first element is a_{k}. Sometimes under the word "sequence" we mean n-tuple also, but it is always clear from the context.

The finite forward difference of a sequence a (or, simple, Δ-difference) is defined as

$$
\Delta^{1} a_{i}=\Delta a_{i}:=a_{i+1}-a_{i}
$$

while the difference of order m is defined as

$$
\Delta^{m} a_{i}:=\Delta\left(\Delta^{m-1} a_{i}\right), m \in\{2,3, \ldots\} .
$$

Similarly, the finite backward difference (∇-difference) is defined as

$$
\nabla^{1} a_{i}=\nabla a_{i}:=a_{i}-a_{i+1},
$$

and the ∇-difference of order m as

$$
\nabla^{m} a_{i}:=\nabla\left(\nabla^{m-1} a_{i}\right)
$$

For $m=0$ we put $\Delta^{0} a_{i}=a_{i}$, and $\nabla^{0} a_{i}=a_{i}$. It is easy to see that

$$
\Delta^{m} a_{i}=\sum_{k=0}^{m}(-1)^{m-k}\binom{m}{k} a_{i+k}
$$

We say that a sequence \mathbf{a} is convex of order m or m-convex if

$$
\Delta^{m} a_{i} \geq 0
$$

holds for any $i \in \mathbb{N}$. If $m=1$, then a is nondecreasing, while if $m=2$, then 2-convexity becomes the classical convexity, i.e. the following holds

$$
a_{i+2}-2 a_{i+1}+a_{i} \geq 0, \quad i \in \mathbb{N}
$$

We say that a sequence \mathbf{a} is ∇-convex of order m if

$$
\nabla^{m} a_{i} \geq 0
$$

holds for any $i \in \mathbb{N}$.
Also, the following notation is frequently used: for some fixed real a and $m \in \mathbb{N}$:

$$
a^{(m)}=a(a-1) \cdots(a-m+1), \quad a^{(0)}=1
$$

In the following Lemma, proved in [61], we give an identity on which all the results of this section are based. It can be observed as a generalization of the well-known Abel identity for an n-tuple $\left(a_{1}, \ldots, a_{n}\right)$ with weights $\left(p_{1}, \ldots, p_{n}\right)$, [51, p.334], given by

$$
\begin{equation*}
\sum_{i=1}^{n} p_{i} a_{i}=a_{1} \sum_{i=1}^{n} p_{i}+\sum_{i=2}^{n}\left(\sum_{k=i}^{n} p_{k}\right) \Delta a_{i-1} \tag{1.1}
\end{equation*}
$$

The structure of the Abel identity can be described as following: the sum $\sum_{i=1}^{n} p_{i} a_{i}$ is represented as a sum of two sums. In the first sum the difference of the order 0 of element a_{1} occures, while in the second sum the differences of the order 1 for the elements a_{1}, \ldots, a_{n-m} occur. The Abel identity can be looked upon as a discrete analogue of the formula for integration by parts. The new identity has a similar structure: the right-hand side of it consists of two sums, in the first sum differences of order $0,1, \ldots, m-1$ of the first element a_{1} appear, while in the second sum only the differences of order m occur but for elements a_{1}, \ldots, a_{n-m}.

Lemma 1.1 Let $m, n \in \mathbb{N}, m<n$. Let $\left(p_{1}, \ldots, p_{n}\right),\left(a_{1}, \ldots, a_{n}\right)$ be real n-tuples. Then

$$
\begin{align*}
\sum_{i=1}^{n} p_{i} a_{i} & =\sum_{k=0}^{m-1} \sum_{i=1}^{n} p_{i}(i-1)^{(k)} \frac{\Delta^{k} a_{1}}{k!} \\
& +\sum_{k=m+1}^{n}\left(\sum_{i=k}^{n} p_{i}(i-k+m-1)^{(m-1)}\right) \frac{\Delta^{m} a_{k-m}}{(m-1)!} \tag{1.2}
\end{align*}
$$

Proof. We prove it by using mathematical induction on m. If $m=1$, then we have

$$
\sum_{i=1}^{n} p_{i} a_{i}=a_{1} \sum_{i=1}^{n} p_{i}+\sum_{k=2}^{n}\left(\sum_{i=k}^{n} p_{i}\right) \Delta a_{k-1}
$$

which is, in fact, the Abel identity. Suppose that (1,2) is valid. Writting the Abel identity for $(n-m)$-tuple ($\left.\Delta^{m} a_{1}, \Delta^{m} a_{2}, \ldots, \Delta^{m} a_{n-m}\right)$ with weights $\left(Q_{m+1}, Q_{m+2}, \ldots, Q_{n}\right)$, where

$$
Q_{k}=\sum_{i=k}^{n}(i-k+m-1)^{(m-1)} p_{i}
$$

we get

$$
\sum_{k=m+1}^{n} Q_{k} \Delta^{m} a_{k-m}=\Delta^{m} a_{1} \sum_{j=m+1}^{n} Q_{j}+\sum_{k=m+2}^{n}\left(\sum_{j=k}^{n} Q_{j}\right) \Delta^{m+1} a_{k-m-1}
$$

The sum $\sum_{j=k}^{n} Q_{j}$ is equal to

$$
\sum_{j=k}^{n} Q_{j}=\sum_{j=k}^{n} \sum_{i=j}^{n}(i-j+m-1)^{(m-1)} p_{i}=\frac{1}{m} \sum_{i=k}^{n}(i-k+m)^{(m)} p_{i} .
$$

For $k=m+1$ we have

$$
\sum_{j=m+1}^{n} Q_{j}=\frac{1}{m} \sum_{j=m+1}^{n}(j-1)^{(m)} p_{j}=\frac{1}{m} \sum_{j=1}^{n}(j-1)^{(m)} p_{j}
$$

where we use the fact that for $j=1, \ldots, m$ the number $(j-1)^{(m)}$ is equal 0 . So, we get

$$
=\frac{\Delta^{m} a_{1}}{m} \sum_{j=1}^{n}(j-1)^{(m)} p_{j}+\sum_{k=m+2}^{n} Q_{k}\left(\sum_{j=k}^{n}(j-k+m)^{(m)} p_{j}\right) \frac{\Delta^{m+1} a_{k-m-1}}{m} .
$$

Let us write the right-hand side of identity (1.2) for $m+1$ instead of m :

$$
\sum_{k=0}^{m} \sum_{i=1}^{n} p_{i}(i-1)^{(k)} \frac{\Delta^{k} a_{1}}{k!}+\sum_{k=m+2}^{n}\left(\sum_{i=k}^{n} p_{i}(i-k+m)^{(m)}\right) \frac{\Delta^{m+1} a_{k-m-1}}{m!}
$$

$$
\begin{aligned}
& =\left(\sum_{k=0}^{m-1} \sum_{i=1}^{n} p_{i}(i-1)^{(k)} \frac{\Delta^{k} a_{1}}{k!}+\sum_{i=1}^{n} p_{i}(i-1)^{(m)} \frac{\Delta^{m} a_{1}}{m!}\right) \\
& +\frac{1}{(m-1)!}\left(\sum_{k=m+1}^{n} Q_{k} \Delta^{m} a_{k-m}-\Delta^{m} a_{1} \frac{1}{m} \sum_{i=1}^{n}(i-1)^{(m)} p_{1}\right) \\
& =\sum_{k=0}^{m-1} \sum_{i=1}^{n} p_{i}(i-1)^{(k)} \frac{\Delta^{k} a_{1}}{k!}+\sum_{k=m+1}^{n}\left(\sum_{i=k}^{n} p_{i}(i-k+m-1)^{(m-1)}\right) \frac{\Delta^{m} a_{k-m}}{(m-1)!} \\
& =\sum_{i=1}^{n} p_{i} a_{i}
\end{aligned}
$$

where we use (1.3) and the assumption of induction. So, by the principle of mathematical induction, identity (1.2) holds.

Remark 1.1 We use the above identity for $m=n$ also. In that case the second sum vanishes.

The following theorem about m-convex sequences is given in [61] by J. Pečarić (see also [77, p. 253]):
Theorem 1.1 Let $\left(p_{1}, \ldots, p_{n}\right)$ be a real n-tuple and $m \in \mathbb{N}, m<n$. The inequality

$$
\begin{equation*}
\sum_{i=1}^{n} p_{i} a_{i} \geq 0 \tag{1.4}
\end{equation*}
$$

holds for every m-convex n-tuple $\left(a_{i}\right)$ if and only if

$$
\begin{equation*}
\sum_{i=1}^{n}(i-1)^{(k)} p_{i}=0 \tag{1.5}
\end{equation*}
$$

holds for every $k \in\{0,1, \ldots, m-1\}$ and

$$
\begin{equation*}
\sum_{i=k}^{n}(i-k+m-1)^{(m-1)} p_{i} \geq 0 \tag{1.6}
\end{equation*}
$$

holds for every $k \in\{m+1, \ldots, n\}$.
Proof. If equalities (1.5) and inequalities (1.6) are satisfied, then the first sum in identity (1.2) is equal to 0 , the second sum is nonnegative and the inequality $\sum_{i=1}^{n} p_{i} a_{i} \geq 0$ holds.

Conversely, let us suppose that $\sum_{i=1}^{n} p_{i} a_{i} \geq 0$ holds for any m-convex sequence $\left(a_{i}\right)$. Since the sequence $a_{i}=(i-\mathbb{1})^{(k)}, i \in\{1, \ldots, n\}$ is m-convex for every $k \in\{0, \ldots, m-1\}$, we get $\sum_{i=1}^{n} p_{i}(i-1)^{(k)} \geq 0$. Convexity of the mentioned sequences are proved in Chapter 2 in detail. Similarly, since the sequence $a_{i}=-(i-1)^{(k)}, i \in\{1, \ldots, n\}$ is m-convex for every $k \in\{0, \ldots, m-1\}$, using (1.4) we get $-\sum_{i=1}^{n} p_{i}(i-1)^{(k)} \geq 0$. Hence, $\sum_{i=1}^{n} p_{i}(i-1)^{(k)}=0$.

Also the sequence

$$
a_{i}=\left\{\begin{array}{cl}
0, & i \in\{1, \ldots, k-1\}, \tag{1.7}\\
(i-k+m-1)^{(m-1)}, & i \in\{k, \ldots, n\},
\end{array}\right.
$$

is m-convex for every $k \in\{m+1, \ldots, n\}$. Thus, by (1.4), we get (1.6).

Remark 1.2 It is easy to see that condition (1.5) is equivalent to the following conditions:

$$
\begin{equation*}
\sum_{i=1}^{n}(i-1)^{k} p_{i}=0, k \in\{0,1, \ldots, m-1\} \text { with } 0^{0}=1 \tag{1.8}
\end{equation*}
$$

or

$$
\begin{equation*}
\sum_{i=1}^{n} i^{k} p_{i}=0, \quad k \in\{0,1, \ldots, m-1\} . \tag{1.9}
\end{equation*}
$$

Also, it is instructive to observe that

$$
\frac{(i-1)^{(k)}}{k!}=\binom{i-1}{k}, \frac{(i-k+m-1)(m-1)}{(m-1)!}=\binom{i-k+m-1}{m-1} .
$$

In the first sum of (1.2) the numbers $(i-1)^{(k)}$ are equal 0 for $i=1, \ldots, k$, so sometimes as a range for i we use i from $k+1$ till n.

If an n-tuple $\left(a_{i}\right)$ is convex of several consecutive orders we have the following theorem which is a consequence of Theorem 1.1. This result can be found in [71].

Theorem 1.2 Let $\left(p_{1}, \ldots, p_{n}\right)$ be a real n-tuple and $m \in \mathbb{N}, m<n, j \in\{1, \ldots, m\}$. Then inequality (1.4) holds for every n-tuple $\left(a_{1}, \ldots, a_{n}\right)$ that is convex of order $j, j+1, \ldots, m$ if and only if

$$
\begin{equation*}
\sum_{i=1}^{n}(i-1)^{(k)} p_{i}=0 \tag{1.10}
\end{equation*}
$$

holds for $k \in\{0,1, \ldots, j-1\}$,

$$
\begin{equation*}
\sum_{i=1}^{n}(i-1)^{(k)} p_{i} \geq 0 \tag{1.11}
\end{equation*}
$$

holds for $k \in\{j, j+1, \ldots, m-1\}$ and

$$
\begin{equation*}
\sum_{i=k}^{n}(i-k+m-1)^{(m-1)} p_{i} \geq 0 \tag{1.12}
\end{equation*}
$$

holds for $k \in\{m+1, \ldots, n\}$.
Proof. If $k \in\{0,1, \ldots, j-1\}$, then the sequences $\left((i-1)^{(k)}\right)_{i}$ and $\left(-(i-1)^{(k)}\right)_{i}$ are convex of order $j, j+1, \ldots, m$. So, for such $k, \sum_{i=1}^{n}(i-1)^{(k)} p_{i}=0$ holds. If $k \in\{j, j+$ $1, \ldots, m-1\}$, then the sequence $\left((i-1)^{(k)}\right)_{i}$ is convex of order $j, j+1, \ldots, m$ and $\sum_{i=1}^{n}(i-$ 1) (k) $p_{i} \geq 0$ for such k.

Since the sequence $\left(a_{n}\right)$ defined as in (1.7) is convex of order $j, j+1, \ldots, m$, so (1.12) holds. This proves one implication of the theorem while the other follows from Lemma 1.1.

A sequence $\left(a_{i}\right)$ is called absolutely monotonic of order m if all the lower order differences of that sequence are nonnegative, i.e. if

$$
\Delta^{k} a_{i} \geq 0 \text { for } k \in\{1,2, \ldots, m\}
$$

As a consequence of the previous Theorem 1.2 we get the following necessary and sufficient conditions for positivity of sum $\sum p_{i} a_{i}$ for an absolutely monotonic sequence of order m. Namely, we obtain the following theorem.

Corollary 1.1 Let $\left(p_{1}, \ldots, p_{n}\right)$ be a real n-tuple and $m \in \mathbb{N}, m<n$. Then inequality (1.4) holds for every n-tuple $\left(a_{1}, \ldots, a_{n}\right)$ that is absolutely monotonic of order m if and only if

$$
\sum_{i=1}^{n} p_{i}=0, \quad \sum_{i=1}^{n}\left(i-(1)^{(k)} p_{i} \geq 0\right.
$$

holds for $k \in\{1, \ldots, m-1\}$, and

$$
\sum_{i=k}^{n}(i-k+m-1)^{(m-1)} p_{i} \geq 0 \text { for } k \in\{m+1, \ldots, n\} .
$$

The following theorem describes how bounds for the sum $\sum p_{i} a_{i}$ depend on bounds of $\Delta^{m} a_{k}$, (see [71]). In fact, using that result we can strengthen the initial inequality.

Theorem 1.3 Let $m \in \mathbb{N}, m<n$ and $\left(a_{1}, \ldots, a_{n}\right),\left(p_{1}, \ldots, p_{n}\right)$ be real n-tuples such that

$$
\begin{equation*}
\sum_{i=1}^{n}(i-1)^{(k)} p_{i}=0 \text { for } k \in\{0,1, \ldots, m-1\} \tag{1.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i=k}^{n}(i-k+m-1)^{(m-1)} p_{i} \geq 0 \text { for } k \in\{m+1, \ldots, n\} . \tag{1.14}
\end{equation*}
$$

If

$$
\begin{equation*}
a \leq \Delta^{m} a_{k} \leq A \text { for } k \in\{1,2, \ldots, n-m\} \tag{1.15}
\end{equation*}
$$

then

$$
\frac{a}{m!} \sum_{i=1}^{n} p_{i} i^{(m)} \leq \sum_{i=1}^{n} p_{i} a_{i} \leq \frac{A}{m!} \sum_{i=1}^{n} p_{i} i^{(m)} .
$$

Proof. The sequences

$$
b_{k}=a_{k}-\frac{a}{m!} k^{(m)} \text { and } c_{k}=\frac{A}{m!} k^{(m)}-a_{k}
$$

have the following properties

$$
\Delta^{m} b_{k}=\Delta^{m} a_{k}-a \text { and } \Delta^{m} c_{k}=A-\Delta^{m} a_{k} .
$$

By (1.15), we get that the sequences $\left(b_{k}\right)$ and $\left(c_{k}\right)$ are m-convex. Since $\left(p_{k}\right)$ satisfies conditions (1.13) and (1.14), then using Theorem 1.1 we get that

$$
\sum_{i=1}^{n} p_{i} b_{i} \geq 0 \text { and } \sum_{i=1}^{n} p_{i} c_{i} \geq 0
$$

and desired inequalities hold.

Remark 1.3 For $a=-A$ condition (1.15) becomes $\left|\Delta^{m} a_{k}\right| \leq A$ and then the statement of the above theorem becomes

$$
\left|\sum_{i=1}^{n} p_{i} a_{i}\right|<\frac{A}{m!} \sum_{i=1}^{n} p_{i} i^{(m)}
$$

Example 1.1 A nice application of Theorem 1.1 is a proof of the Nanson inequality. In [52] E.J. Nanson proved the following inequality: If a real $(2 n+1)$-tuple $\left(a_{1}, \ldots, a_{2 n+1}\right)$ is convex, then

$$
\begin{equation*}
\frac{a_{1}+a_{3}+\ldots+a_{2 n+1}}{n+1} \geq \frac{a_{2}+a_{4}+\ldots+a_{2 n}}{n} \tag{1.16}
\end{equation*}
$$

The original proof of the Nanson inequality (1.16) and some historical remarks are given in [49,pp. $202-203]$. Here we give a proof of (1.16) based on Theorem 1.1.

Putting

$$
N=2 n+1, p_{1}=p_{3}=\ldots=p_{2 n+1}=\frac{1}{n+1}, p_{2}=p_{4}=\ldots=p_{2 n}=-\frac{1}{n}
$$

we get

$$
\begin{aligned}
& \sum_{i=1}^{N} p_{i}=\frac{1}{n+1}-\frac{1}{n}+\ldots+\frac{1}{n+1}-\frac{1}{n}+\frac{1}{n+1}=n\left(\frac{1}{n+1}-\frac{1}{n}\right)+\frac{1}{n+1}=0 \\
& \begin{aligned}
\sum_{i=1}^{N}(i-1) p_{i} & =\frac{0}{n+1}-\frac{1}{n}+\frac{2}{n+1}-\frac{3}{n} \ldots+\frac{2 n-2}{n+1}-\frac{2 n-1}{n}+\frac{2 n}{n+1} \\
& =\frac{2+4+\ldots+2 n}{n+1}-\frac{1+3+\ldots+2 n-1}{n}=\frac{n(n+1)}{n+1}-\frac{n^{2}}{n}=0
\end{aligned}
\end{aligned}
$$

and for $k \geq 3$

$$
\begin{aligned}
& \sum_{i=k}^{N}(i-k+1) p_{i}=p_{k}+2 p_{k+1}+3 p_{k+2}+\ldots+(N-k+1) p_{N} \\
& =\left\{\begin{array}{r}
\frac{1}{n+1}+\left(-\frac{2}{n}+\frac{3}{n+1}\right)+\left(-\frac{4}{n}+\frac{5}{n+1}\right)+\ldots\left(-\frac{N-k}{n}+\frac{N-k+1}{n+1}\right), k \text { even } \\
\quad\left(-\frac{1}{n}+\frac{2}{n+1}\right)+\left(-\frac{3}{n}+\frac{4}{n+1}\right)+\ldots+\left(-\frac{N-k}{n}+\frac{3}{N-k+1}\right), k \text { odd }
\end{array}\right.
\end{aligned}
$$

$$
=\left\{\begin{aligned}
\frac{\left(\frac{N-k}{2}+1\right)\left(n-\frac{N-k}{2}\right)}{n(n+1)} & \geq 0, k \text { even } \\
\frac{1}{n(n+1)} \frac{N-k+1}{2}\left(n-\frac{N-k+1}{2}\right) & \geq 0, k \text { odd. }
\end{aligned}\right.
$$

Applying Theorem 1.1 for $m=2$ we get that $\sum_{i=1}^{N} p_{i} a_{i} \geq 0$, i.e.

$$
\frac{a_{1}}{n+1}-\frac{a_{2}}{n}+\frac{a_{3}}{n+1}-\frac{a_{4}}{n}+\ldots \frac{a_{2 n-1}}{n+1}-\frac{a_{2 n}}{n}+\frac{a_{2 n+1}}{n+1} \geq 0
$$

which is the desired inequality (1.16).
Let us use Theorem 1.3 to get an estimate for the difference of the left-hand and the right-hand side of the Nanson inequality if the second differences are bounded. This result is proved in [3] using different approach.

Let us suppose that for sequence $\left(a_{i}\right)$ the following holds

$$
a \leq \Delta^{2} a_{k} \leq A, \quad k \in\{1,2, \ldots 2 n-1\}
$$

for some $a, A \in \mathbf{R}$. Then

$$
\begin{equation*}
\frac{2 n+1}{6} a \leq \frac{a_{1}+a_{3}+\ldots+a_{2 n+1}}{n+1}-\frac{a_{2}+a_{4}+\ldots+a_{2 n}}{n} \leq \frac{2 n+1}{6} A \tag{1.17}
\end{equation*}
$$

From the previous calculation we have that (1.13) holds for $k=0,1$ and (1.14) holds for $k=2$. Let us calculate $\sum_{i=1}^{N} p_{i} i^{(2)}$.

$$
\begin{aligned}
\sum_{i=1}^{N} p_{i} i^{(2)} & =\sum_{i=1}^{N} p_{i} i^{2}-\sum_{i=1}^{N} p_{i} i=\sum_{i=1}^{N} p_{i} i^{2} \\
& =\frac{1}{n+1}\left(1^{2}+3^{2}+\ldots+(2 n+1)^{2}\right)+\frac{1}{n}\left(2^{2}+4^{2}+\ldots+(2 n)^{2}\right) \\
& =\frac{2 n+1}{3}
\end{aligned}
$$

From that result we get (1.17).
Example 1.2 Let us illustrate an application of Theorem 1.1 to another inequality due to N . Ozeki. In [55], and also in [49, p.199], the following result is given: If $a_{n-1}+a_{n+1} \geq 2 a_{n}$ for $n=2,3, \ldots$, then

$$
\begin{equation*}
A_{n-1}+A_{n+1} \geq 2 A_{n}, \quad n=2,3, \ldots \tag{1.18}
\end{equation*}
$$

where

$$
A_{n}=\frac{a_{1}+\ldots+a_{n}}{n}
$$

In other words, if a sequence $\left(a_{i}\right)$ is convex, then the sequence $\left(A_{i}\right)$ of arithmetic means is also convex.

Putting

$$
p_{1}=p_{2}=\ldots=p_{n-1}=\frac{1}{n-1}+\frac{1}{n+1}-\frac{2}{n}, p_{n}=\frac{1}{n+1}-\frac{2}{n}, \quad p_{n+1}=\frac{1}{n+1}
$$

we get

$$
\sum_{i=1}^{n+1} p_{i}=0, \sum_{i=1}^{n+1}(i-1) p_{i}=0, \sum_{i=k}^{n+1}(i-k+1) p_{i} \geq 0
$$

Using Theorem 1.1 for $m=2$ we get that $\sum_{i=1}^{n+1} p_{i} a_{i} \geq 0$, i.e.

$$
\begin{gathered}
a_{1}\left(\frac{1}{n-1}+\frac{1}{n+1}-\frac{2}{n}\right)+\ldots+a_{n-1}\left(\frac{1}{n-1}+\frac{1}{n+1}-\frac{2}{n}\right) \\
+a_{n}\left(\frac{1}{n+1}-\frac{2}{n}\right)+\frac{1}{n+1} a_{n+1} \geq 0 \\
\frac{a_{1}+a_{2}+\ldots+a_{n-1}}{n-1}+\frac{a_{1}+a_{2}+\ldots+a_{n+1}}{n+1}-2 \frac{a_{1}+a_{2}+\ldots+a_{n}}{n} \geq 0
\end{gathered}
$$

which is the desired inequality (1.18).
Example 1.3 If $\left(a_{i}\right)$ is convex, then for any $n \geq 1$

$$
\begin{equation*}
a_{1}+a_{3}+\ldots+a_{2 n+1} \geq a_{2}+a_{4}+\ldots+a_{2 n}+\frac{a_{1}+a_{3}+\ldots+a_{2 n+1}}{n+1} . \tag{1.19}
\end{equation*}
$$

This inequality for $a_{i}=a$ is due to Steinig ([3, 92]).
To prove this, we use Theorem 1.1 for $m=2$. Putting

$$
N=2 n+1, p_{1}=p_{3}=\ldots=p_{2 n+1}=\frac{n}{n+1}, p_{2}=p_{4}=\ldots=p_{2 n}=-1
$$

we get that property (1.13) holds for $k=0,1$ and (1.14) holds for $k=2$. So, by Theorem 1.1 inequality (1.19) holds. Furthermore, if $\left(a_{i}\right)$ satisfies (1.13) for $k=0,1$, (1.14) for $k=2$ and if $a \leq \Delta^{2} a_{k} \leq A(k=1, \ldots, 2 n-1)$, then

$$
\frac{n(2 n+1)}{6} a \leq a_{1}-a_{2}+a_{3}-\ldots+a_{2 n+1}-\frac{a_{1}+a_{3}+\ldots+a_{2 n+1}}{n+1} \leq \frac{n(2 n+1)}{6} A
$$

Let us again consider a basic identity from Lemma 1.1, with slightly modified indexing in the first sum:

$$
\begin{aligned}
\sum_{i=1}^{n} p_{i} a_{i} & =\sum_{k=1}^{m} \sum_{i=1}^{n} p_{i}(i-1)^{(k-1)} \frac{\Delta^{k-1} a_{1}}{(k-1)!} \\
& +\sum_{k=m+1}^{n}\left(\sum_{i=k}^{n} p_{i}(i-k+m-1)^{(m-1)}\right) \frac{\Delta^{m} a_{k-m}}{(m-1)!}
\end{aligned}
$$

Putting $p_{1}=\ldots=p_{n-1}=0$ and $p_{n} \neq 1$ we obtain the following ([79])

$$
a_{n}= \begin{cases}\sum_{k=1}^{m}(n-1)^{(k-1)} \frac{\Delta^{k-1} a_{1}}{(k-1)!} & \\ \quad+\sum_{k=m+1}^{n}(n-k+m-1)^{(m-1)} \frac{\Delta^{m} a_{k-m}}{(m-1)!}, & m<n \\ \sum_{k=1}^{n}(n-1)^{(k-1)} \frac{\Delta^{k-1} a_{1}}{(k-1)!}, & m=n\end{cases}
$$

The above-mentioned identity can be considered as the Taylor formula for sequences.
The following theorem was published in [62] and it gives results about preservation of convexity of a sequence which is made from a sequence $\left(a_{i}\right)$.

Let $\left(a_{0}, a_{1}, a_{2}, \ldots\right)$ be a real sequence and $\left[p_{n, i}\right], i=0,1, \ldots, n ; n=0,1,2, \ldots$ a lôwer triangular matrix of real numbers, i.e.

$$
\left[\begin{array}{ccccccc}
p_{00} & 0 & 0 & 0 & \ldots & 0 & \ldots \\
p_{10} & p_{11} & 0 & 0 & \ldots & 0 & \ldots \\
p_{20} & p_{21} & p_{22} & 0 & \ldots & 0 & \ldots \\
\vdots & \vdots & \vdots & & & & \\
p_{n 0} & p_{n 1} & p_{n 2} & p_{n 3} & \ldots & p_{n n} & 0 \\
\vdots & \vdots & \vdots & & &
\end{array}\right]
$$

Let $\left(\sigma_{n}\right)$ be a sequence defined as

$$
\begin{equation*}
\sigma_{n}=\sum_{k=0}^{n} p_{n, n-k} a_{k}, \quad n=0,1,2, \ldots \tag{1.20}
\end{equation*}
$$

Theorem 1.4 Let σ_{n} be defined as in (1.20) and $s \in \mathbb{N}$. Then the implication

$$
\Delta^{m} a_{n} \geq 0 \Rightarrow \Delta^{s} \sigma_{n} \geq 0
$$

is valid for every sequence $\left(a_{n}\right)$ if and only if

$$
\Delta^{s} X_{n}(k+1, k)=0 \quad \text { for } \quad k \in\{0,1, \ldots, m-1\} ; \quad n \in\{0,1,2, \ldots\}
$$

and

$$
\Delta^{s} X_{n}(m, k) \geq 0 \quad \text { for } \quad k \in\{m, \ldots, n+s\} ; \quad n \in\{0,1,2, \ldots\}
$$

where

$$
X_{n}(m, k)=\left\{\begin{array}{cc}
0 & \text { for } n<k \tag{1.21}\\
\sum_{j=0}^{n-k}\binom{n-k+m-1-j}{m-1} p_{n, j} & \text { for } n \geq k
\end{array}\right.
$$

Proof. Let us write the difference $\Delta^{s} \sigma_{n}$ as a linear combination of the elements a_{j}. Using the notation:

$$
q_{n}(j)=\left\{\begin{array}{lll}
0 & \text { for } & n<j \\
p_{n, n-j} & \text { for } & n \geq j
\end{array}\right.
$$

we get the following

$$
\begin{aligned}
\Delta \sigma_{n} & =\sigma_{n+1}-\sigma_{n}=\sum_{j=0}^{n+1} p_{n+1, n+1-j} a_{j}-\sum_{j=0}^{n} p_{n, n-j} a_{j} \\
& =\sum_{j=0}^{n}\left(p_{n+1, n+1-j}-p_{n, n-j}\right) a_{j}+p_{n+1,0} a_{n+1}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{j=0}^{n} \Delta q_{n}(j) a_{j}+\Delta q_{n}(n+1) a_{n+1}=\sum_{j=0}^{n+1} \Delta q_{n}(j) a_{j} \\
\Delta^{2} \sigma_{n} & =\Delta \sigma_{n+1}-\Delta \sigma_{n}=\sum_{j=0}^{n+2} \Delta q_{n+1}(j) a_{j}-\sum_{j=0}^{n+1} \Delta q_{n}(j) a_{j} \\
& =\sum_{j=0}^{n+1} \Delta\left(q_{n+1}(j)-q_{n}(j)\right) a_{j}+\Delta q_{n+1}(n+2) a_{n+1} \\
& =\sum_{j=0}^{n+2} \Delta^{2} q_{n}(j) a_{j} .
\end{aligned}
$$

Similarly, we get

$$
\begin{equation*}
\Delta^{s} \sigma_{n}=\sum_{j=0}^{n+s} \Delta^{s} q_{n}(j) a_{j} \quad \text { for every } s \tag{1.22}
\end{equation*}
$$

and

$$
\Delta^{s} X_{n}(m, k)=\sum_{i=k}^{n+s}\binom{i-k+m-1}{m-1} \Delta^{s} q_{n}(i) .
$$

Writting identity (1.2) for $n+s+1$-tuples ($a_{0}, a_{1}, \ldots, a_{n+s}$) and
($\left.\Delta^{s} q_{n}(0), \Delta^{s} q_{n}(1), \ldots, \Delta^{s} q_{n}(n+s)\right)$ and using the above results we get the identity

$$
\begin{equation*}
\Delta^{s} \sigma_{n}=\sum_{k=0}^{m-1} \Delta^{k} a_{0} \Delta^{s} X_{n}(k+1, k)+\sum_{k=m}^{n+s} \Delta^{m} a_{k-m} \Delta^{s} X_{n}(m, k) \tag{1.23}
\end{equation*}
$$

Hence, the statement follows from Theorem 1.1.
Theorem 1.4 is a generalization of several previously published results. Firstly, in [56] N . Ozeki obtained conditions on a matrix $\left[p_{n, i}\right]$ implying that for each convex sequence $\left(a_{n}\right)$ the sequence $\left(\sigma_{n}\right)$ is also convex, i.e. it is a particular case of Theorem 1.4 for $m=s=2$. One decade later a particular case of Theorem 1.4 for $m=s$ was published in [34] and [41].

A result which is based on identity (1.23) is given as the following theorem, [62].
Theorem 1.5 Let $\left(a_{n}\right)$ be a real sequence and let σ_{n} be defined as in (1.20). If $\left|\Delta^{m} a_{n}\right| \leq N$ for $n \in\{0,1,2, \ldots\}$, and

$$
\begin{equation*}
\Delta^{s} X_{n}(k+1, k)=0 \text { for } k \in\{0,1, \ldots, m-1\} ; \quad n \in\{0,1,2, \ldots\} \tag{1.24}
\end{equation*}
$$

where $X_{n}(m, k)$ is given in (1.21), then

$$
\left|\Delta^{s} \sigma_{n}\right| \leq N \sum_{k=m}^{n+s}\left|\Delta^{s} X_{n}(m, k)\right|
$$

Proof. This is an immediate consequence of (1.23).
The following theorem also gives a bounds for $\Delta^{s} \sigma_{n}$, (see [71]).

