Chapter

General Linear Inequalities
for Sequences

In this chapter we prove several identities for sums Y, prax, > pija;b; involving finite for-
ward or backward differences of higher order. Using these identities we obtain necessary
and sufficient conditions under which the above-mentioned sums are nonnegative for dif-
ferent classes of sequences. We consider the classes of convex sequences of higher order,
V-convex sequences of higher order, starshaped sequences, the class,of p,g-convex se-
quences etc.

1.1 Convex Sequences-of Higher Order

This section is devoted to an identity for the sum ) pra; and to necessary and sufficient
conditions under which this sum is nonnegative for the class of convex sequences of higher
order.. Let us define and discuss some basic concepts. For a real sequence a we usually
use notation (a;) or (a;);7>, when we want to stress that the first element is a;. Sometimes
undet the word “sequence” we mean n-tuple also, but it is always clear from the context.

The finite forward difference of a sequence a (or, simple, A-difference) is defined as

1 -
A a; = Aa,' =dajy1 —ag,
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while the difference of order m is defined as
A"a; = AA"a;), me {2,3,...}.
Similarly, the finite backward difference (V-difference) is defined as
Vlai =Va;:=a;—aj.,
and the V-difference of order m as
V"a; = V(V" a;).
For m = 0 we put AVq; = a;, and VOaq; = a;. Tt is easy to seethat

A'g; — zmj(fl)'"*" <’Z)ai+k.

k=0
We say that a sequence a is convex of‘order m or m-convex if
Amai 2 0

holds for any ;i € N.WIf m = 15 then a is nondecreasing, while if m = 2, then 2-convexity
becomes the classical convexity, i.e. the following holds

aiyy—2ai41+a; >0, ieN.
We say that a sequence a is V-convex of order m if
V™"a; >0
holds for any i € N.
Also, the following notation is frequently used: for some fixed real a and.m & N:

d™ =a(a—1)---(a—m+1), a¥=1.

In the following Lemma, proved in [61], we give an identity on which all the results
of this section are based. It can be observed as a generalization of the well-known Abel
identity for an n-tuple (ay,...,a,) with weights{pis. ., pu), [51, p.334], given by

n n n n
Y piai=a( Y pi+, (ZPk) Aa;_;. (1.1)
i=1 =1, i=2 \k=i

The structure of the Abel\identity can be described as following: the sum Y | p;a;
is represented as_a sum of two sums. In the first sum the difference of the order O of
element a; occures, while in the second sum the differences of the order 1 for the elements

ai,...,an—m oceur. The Abel identity can be looked upon as a discrete analogue of the
formula for integration by parts. The new identity has a similar structure: the right-hand
side of it consists of two sums, in the first sum differences of order 0,1,...,m — 1 of the

first element a| appear, while in the second sum only the differences of order m occur but
for elements ay, ..., a,—m-
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Lemma 1.1 Letm,n €N, m <n. Let (py,...,pn), (a1,...,an) be real n-tuples. Then

TS YURIES!
i=1 k=0 i= l k!
n Anl -~
+ 2 <2pi(ik+m1)(’"1)> dk o (1.2)
k=m+1 \i=k (m—1)!

Proof. We prove it by using mathematical induction on m. Ifan = 1, then we have

S pa-an S 3 () da

which is, in fact, the Abel identity. Suppose-that (1.2) is valid. Writting the Abel identity
for (n —m)-tuple (A"ay,A"ay, ., A" ap ) with weights (Opi1,Om+2,---,0n), Where

n

0 =Y (i~ k+m—1)"Up,
i=k

we get

n n n n
2 QkAmak,m:Amal 2 Qj+ 2 (2 Q,) AerlClkfmfl.

k=m+1 j=m+1 k=m+2 \ j=k

The sum 2’]’:/< Q; is equal to

1
ZQJ 22 l*]er*l (m 1) :_Z(i,k+m)(m)pi.
J=ki=j m ik
For k = m+ 1 we have

n n

S 0=5 3 G- 0"pd XV
J

j=m+1 /':m+1

where we use the fact that for j = 1,... m the number (j — 1)(’") is equal 0. So, we get

n
M oA ay_
k=m+1
Aal & L n AL,
2 j~nmpi+ ¥ (Z(jk+m)<’”)p,»> e (1.3)
J=1 k=m+2 \ j=k m

Let us write the right-hand side of identity (1.2) for m + 1 instead of m:

m n A al n n ) A"Hlak, 1
Z sz (i—1) A + X (ZPi(lker)(m)) Tm

k=0i=1 k=m+2 \i=k
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m—1 n k n m
— (Z Zpi(i—l)(@Ak?l +2p,~(i—1)(m)A al)

!
i=1 m:

n

1 = 1

k=m-+1 miz

m—1 Aka n n Aa,
= (i— 1) == (i— _pym-1) | 2 Gk
= Zpl(l 1) ! + Z sz(l k+m—1) (h—1)!

k=m+1 \i=k

where we use (1.3) and the assumption of induction. So, by the principle of mathematical
induction, identity (1.2) holds. O

Remark 1.1 We use the above identity for m = n"also. In that case the second sum
vanishes.

The following theorem,about n=convex sequences is given in [61] by J. Pecari¢ (see also
[77, p. 253]):

Theorem 1.1 Let (p15.. ., pn) be a real n-tuple and m € N, m < n. The inequality

n
Y piai >0 (1.4)
i=1

holds for every m-convex n-tuple (a;) if and only if

(i—1)®pi=0 (1.5)

-

1
holds for every k € {0,1,...,m—1} and

N(i—k+m—1)""p; >0 (1.6)
i=k

holds for every k € {m+1,...,n}.

Proof. If equalities (1.5) and inequalities (1.6) are satisfied, then the first sum in identity
(1.2) is equal to 0, the second sum is honnegative and the inequality ¥ | p;a; > 0 holds.
Conversely, let us suppose that Y| pja; > 0 holds for any m-convex sequence (g;).

Since the sequence a; = (i +1)®, i € {1777, n} is m-convex for every k € {0,...,m— 1},
we get Y1 pi(i— 1)(") >.0. Conyexity of the mentioned sequences are proved in Chapter 2
in detail. Similarly, since thesequence a; = — (i — 1)), i € {1,...,n} is m-convex for every

k€ {0,...,m=1}, using (1.4) we get — ¥, p;(i— 1)) > 0. Hence, ¥, pi(i —1)%) =0.
Also.the sequence

0, ie{l,... .k—1},
a;j = (1.7)
(i—k+m—1)0=0" ic{k,... n},
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is m-convex for every k € {m+1,...,n}. Thus, by (1.4), we get (1.6). |
Remark 1.2 Itis easy to see that condition (1.5) is equivalent to the following conditions:

(i—1)fp;i=0, ke{0,1,....m—1} with 0°=1 (1.8)

M=

i=1

or
n

N i*pi=0, ke{0,1,....m—1}. (1.9)
i=1

Also, it is instructive to observe that

(i—DW i1\ (kg —1)Y i km—1
K\ k) (m—=1)! B m—1 '

In the first sum of (1.2) the:numbers-(7 — 1)¥) are equal O for i = 1, ..., k, so sometimes as
a range for i we use i from k 4 1'till n.

If anw-tuple. (;) is convex of several consecutive orders we have the following theorem
which'is a consequence of Theorem 1.1. This result can be found in [71].

Theorem 1.2 Let (py,...,pn) be a real n-tuple and m € N, m < n, j € {1,...,m}. Then
inequality (1.4) holds for every n-tuple (ay, ..., ay) that is convex of order j,j+1,... ,mif
and only if

n

Yi-1)Pp; =0 (1:10)

I
—_

holds fork € {0,1,...,j—1},
Y (i-1)%pi>0 (1.11)

holds forke {j,j+1,....m—1} and

n

3 (i kA — 1) Dp; >0 (1.12)
i=k

holds for k € {m+1,....n}.

Proof. If k€ 10,1,..", j — 1}, then the sequences ((i — 1)*)); and (—(i — 1)®)); are
convex of order j,j+1,...,m. So, for such &k, ¥} (i — 1)(")p,~ =0holds. Ifk e {j,j+
1,...,m*1}, then the sequence ((i —1)®)); is convex of order j, j+1,...,mand X, (i —
1)(k)pi > 0 for such k.

Since the sequence (a,) defined as in (1.7) is convex of order j, j+ 1,...,m, so (1.12)
holds. This proves one implication of the theorem while the other follows from Lemma
1.1. ad
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A sequence (;) is called absolutely monotonic of order m if all the lower order differ-
ences of that sequence are nonnegative, i.e. if

Afa; >0 for ke {1,2,...,m}.
As a consequence of the previous Theorem 1.2 we get the following necessary'and suffi-
cient conditions for positivity of sum Y, p;a; for an absolutely monotonic sequence of order

m. Namely, we obtain the following theorem.

Corollary 1.1 Let (py,...,pn) be a real n-tuple and m € N, m < n. Then inequality (1.4)
holds for every n-tuple (ay, ... ,a,) that is absolutely monotonic of.order nvif and only if

holds fork € {1,...,m— 1}, and

(i“ktm—10)"Vp, >0 for ke {m+1,...,n}.

M=

k

I

The following theorem describes how bounds for the sum ) p;a; depend on bounds of
AMap, (see [71]). In fact, using that result we can strengthen the initial inequality.

Theorem 1.3 Letm e N, m <nand (ay,...,an), (p1,...,pn) be real n-tuples such that

n
S (i-1)Op;=0 for ke{0,1,...,m—1} (143)
i=1
and
n
Ni—k+m—1)""Vp, >0 for ke {m+1,.£ n} (1.14)
i=k
If
a<A'"ay <Afor ke{1,2,...,n—m}, (1.15)
then

A
m! ;

sz Si a; <

Proof. The sequences

A
bk =dj — %k(m) and Cp = %k(m) —ay

have the following properties

A"bp =A"ar—a and A"cp =A— A"q.
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By (1.15), we get that the sequences (by) and (c) are m-convex. Since (p;) satisfies
conditions (1.13) and (1.14), then using Theorem 1.1 we get that

n n
Zpibi 2 0 and Zpici Z 0
i=1 i=1

and desired inequalities hold. O

Remark 1.3 For a = —A condition (1.15) becomes |A™a;| £ A and then the statement of
the above theorem becomes

pii(m) )

VE

<

n
Y piai
i=1

A
m:
i

1

Example 1.1 A nice application.of Theorem 1.1 is a proof of the Nanson inequality. In
[52] E.J. Nanson proved the followinginequality: If a real (2n+ 1)-tuple (ay, ... ,az,+1) is

convex, then
a)tasz+...+ay+1 > ay+ag+...+axy

n+1 n

(1.16)
The original\proof of the Nanson inequality (1.16) and some historical remarks are given

in [49;pp.202 — 203]. Here we give a proof of (1.16) based on Theorem 1.1.
Putting

N=2n+1,p1=p3=...=pmi1 =", P2=P4=-.. = Pm =5

.:pl_nJrl n "+l ono on+l _\nt+lon n+l

i(i_l) R U SN L S ek S
: pi S n+1 on_ndlonT i+l n n+1

2444 #20 \ 1+3+...42n—1  n(n+1) n270
N n+1 n - on+1 no

and fork > 3

N
E(i—k+1)pi=pk+2pk+1+3pk+2+...+(N—k+1)pN
i=k

Pt (3 )+ () (B2 B even

n

(b 20)+ (3 gin) ot (et ). ot
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(41D (=5
n(n+1)

LNkl NIy o
nn+1) 2 2

>0, keven

Applying Theorem 1.1 for m = 2 we get that 2?/:1 pia; > 0, i.e.

a a as ag mazn—liaﬁJrazwlzo
n+1 n n+1 n n+1 n n+1

which is the desired inequality (1.16).

Let us use Theorem 1.3 to get an estimate for the difference of the-left-hand and the
right-hand side of the Nanson inequality if'the second differences are bounded. This result
is proved in [3] using different approach.

Let us suppose that for sequence (a;).the following holds

a <A <A ke{l,2,..2n—1}

for some a,A € R. Then

2n+1a§ a tazti.tam atast...Fay < 2n+1A. (1.17)
6 n+1 n 6

Fromthe previous calculation we have that (1.13) holds for k = 0,1 and (1.14) holds for
k = 2. Letus calculate ¥ | p;it?).

N N N N
Y pii? =Y piit =Y pii=Y pii®
i=1 -1 -1 i=1

_ 1 2 2 2 1 2 2 2
_n+1(1 +3°+...+(2n+1) )+n(2 +47+...+(2n))

2n+1
3
From that result we get (1.17).

Example 1.2 Let us illustrate an application of Theorem 1.1 to another inequality due to
N. Ozeki. In [55], and also in [49, p.199], the following result is given: If a,,— | + a1 > 2ay
forn=2,3,..., then

Ay q+Aud >24,, n=273,..., (1.18)
where
_ar+...+ap

A, =
n

In other wordsyif a sequence (a;) is convex, then the sequence (A;) of arithmetic means is
also convex.

Putting
1 1 2 1

n71+n+1

1
Pl=pP2=...=Pn-1= 0 Pn+1—m»
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we get
n+1 n+1 n+1

Y pi=0, Y (i~ 1)pi=0, ¥ (i—k+1)p;>0.

i=1 i=1 i=k
Using Theorem 1.1 for m = 2 we get that Z?jll pia; > 0, i.e.

1 " 1 2 4o 1 " 1 2
T n+tl n R n+1l-n

+ ! 2 + ! >0
a - = a
n }’l+1 n }’l+1 n+1 =Y,

aytay+...+tay—1  ayta+...+aps1 »2a1+a2+...+an >0
n—1 n+4-1 n -
which is the desired inequality (1.18):

Example 1.3 If (q;) is convex; then forany-n> 1

ay+az+...+a
ay+az+...+axyy1 > arHas+ ... +axy, + ! 3n+1 2n+1. (1.19)

This inequality for a;'= a is due to Steinig ([3, 92]).
To, prove this, we use Theorem 1.1 for m = 2. Putting
n
N=2n+1,pr=p3=...=pyt1=——, p2=ps=...=py=—1
n+1

we get that property (1.13) holds for k =0, 1 and (1.14) holds for k = 2. So, by Theorem
1.1 inequality (1.19) holds. Furthermore, if (a;) satisfies (1.13) for k = 0,1, (1.14) for
k=2andifa <A?qy <A (k=1,...,2n—1), then
2n+1 e 2n+1
magal—ag—i—%—...—i—aznﬂ—a1+a3+ +a2n+1§n( nt )A.
6 n+1 6
Let us again consider a basic identity from Lemma 1.1, with slightly modified indexing

in the first sum:

m n Ak71a1

S - 3 i1

k=1i=1

+ pili —k+m—1)\"" —.
k=m+1 \i=k (m—1)!
Putting p; = ... = p,—1 = 0 and p, = 1 we obtain the following ([79])
¥ (nkl)(k*l)&
o] (k—1)!
= Ay
+ ), (n—k—i—m—l)(m*l)ﬂ, m<n,
an = kmm+1 (m—1)!
n Ak71a1
,Zfl(” ) k-1 m=n
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The above-mentioned identity can be considered as the Taylor formula for sequences.

The following theorem was published in [62] and it gives results about preservation of
convexity of a sequence which is made from a sequence (a;).

Let (aop,a1,az,...) be a real sequence and [p,,], i =0,1,...,n;n=0,1,2,... a lower
triangular matrix of real numbers, i.e.

[po 0 0 0 ... 0
P1o P11 0 0 O
popap2 0 ... 0

Pn0O Pnl Pn2 Pn3 --- Pnn 0

Let (0,) be a sequence defined as
n
O =D, Pnp=al, n=0,1,2,... (1.20)
k=0
Theorem 1.4 Let 6, be defined as in (1.20) and s € N. Then the implication
A"a, > 0= A0, >0
is valid for every sequence (ay) if and only if
NX,(k+1,k)=0 for ke{0,1,....m—1}; ne{0,1,2,...}

and
ANX,(m,k) >0 for ke{m,...,n+s}; ne{0,1,2,...}

where

0 Sfor (n <k

X, (m,k) = "Zk(n—k—i—m—l—j

)p,,,j for. n>k. 1.21)
m—1

J=0

Proof. Let us write the difference A*G;, as a linear ,combination of the elements a;.
Using the notation:

()= 0 for n<j
WJ) T Pnn—j for n>j
we get the following
n+1 n
Ao, =041 —0,= Pn+1n+1—jadj — Z Pn.n—jdj
j=0 j=0

M=

(pn+1,n+17j - Pn,n—j)aj + Pn+1,00n+1
j=0
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n+1
= ZA‘]n a] JFA‘In nJFl an+1 ZA‘]n a/7

n+2 n+1
Azcn = A(711Jr1 Ao, = Z AQn+1 Z AQn
Jj=
n+1
= Z A(‘InJrl (]) - Qn(j))aj +Aqni1 (n + 2)an+1
=0
n+2 5
= Z A Qn(j)aj
Jj=0
Similarly, we get
n+-s
Aoy = Ngu(j)a; foreverys (1.22)
=0

and

wx,mb) = % (A w0

i=k m—1

Wiritting identity (1.2) for n+ s+ L-tuples (ag,ay, - .. ,an+s) and
(A%gn(0),A%gn(1),...,A%gy(n+s)) and using the above results we get the identity

n+s

an_ZAkaOA‘X (k+1Lk)+ Y A"y A Xy(m,k). (1.28)
k=0 k=m
Hence, the statement follows from Theorem 1.1. O

Theorem 1.4 is a generalization of several previously published results. Firstly, in [56]
N. Ozeki obtained conditions on a matrix [p, ;] implying that foreach convex sequence (a;, )
the sequence (0y,) is also convex, i.e. it is a particular case of Theorem 1.4 for m = s = 2.
One decade later a particular case of Theorem 1.4 fof m =\s was published in [34] and [41].
A result which is based on identity (1.23) is given as the following theorem, [62].

Theorem 1.5 Let (a,) be a real sequence.and let,o, be defined as in (1.20). If|A"a,| <N
forne{0,1,2,...}, and

AX,(k+1,k) =0 for k€{0,1,...m—1}; ne{0,1,2,...} (1.24)

where X,(m, k) is given in'(1.21), then
n+s
|A'o,| <N 2 |A X, (m, k)|
k=m

Proof. This is an immediate consequence of (1.23). O

The following theorem also gives a bounds for A°c;,, (see [71]).





