
Chapter1
Definitions and Basic Results

1.1 Hilbert-type Inequalities with Conjugate
Exponents

Let 1
p + 1

q = 1, p > 1. The Hilbert inequality asserts that∫
R

2
+

f (x)g(y)
x+ y

dxdy ≤ 
sin 

p

‖ f‖p‖g‖q (1.1)

holds for all non-negative measurable functions f ∈ Lp(R+) and g∈ Lq(R+). After its dis-
covery at the beginning of the 20th century, the Hilbert inequality was studied by numerous
authors, who improved and generalized it in many different directions. This inequality is
still of interest to numerous authors. The applications in diverse fields of mathematics
have certainly contributed to its importance. For a comprehensive inspection of the initial
development of the Hilbert inequality, the reader is referred to a classical monograph [47],
while some recent results are collected in monograph [63].

In this book we refer to the following multidimensional extension of inequality (1.1)
established by Krnić et al. (see [63], [99]).

Theorem 1.1 Suppose (i,i,i) are  -finite measure spaces, n
i=1

1
pi

= 1, pi > 1, and
K :  → R, i j :  j → R, fi : i → R, i, j = 1,2, . . . ,n, are non-negative measurable
functions. If n

i, j=1 i j(x j) = 1, then the following inequalities hold and are equivalent∫


K(x)
n


i=1

fi(xi)d(x) ≤
n


i=1

‖iii fi‖pi (1.2)
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2 1 DEFINITIONS AND BASIC RESULTS

and ⎡⎣∫
n

(
1

(nnn)(xn)

∫
̂n

K(x)
n−1


i=1

fi(xi)d̂n(x)

)P

d(xn)

⎤⎦ 1
P

≤
n−1


i=1

‖iii fi‖pi ,

(1.3)

where 1
P = n−1

i=1
1
pi

,  = n
i=1i, ̂i

= n
j=1, j �=i j , x = (x1,x2, . . . ,xn), d(x) =

n
i=1 di(xi), d̂ i(x) = n

j=1, j �=i d j(x j), and

i(xi) =

[∫
̂i

K(x)
n


j=1, j �=i

 pi
i j (x j)d̂ i(x)

] 1
pi

. (1.4)

The above notation will be used throughout the whole monograph. In addition, ‖·‖r stands

for the usual norm in Lr(), that is ‖ f‖r = [
∫
 | f (x)|rd(x)]

1
r , r > 1. Inequalities follow-

ing from (1.2) are usually referred to as the Hilbert-type inequalities since (1.1) is a particu-
lar case of (1.2). Further, inequalities related to (1.3) are usually called Hardy-Hilbert-type
inequalities since (1.3) implies the classical Hardy inequality, which will be discussed later.
Inequalities (1.2) and (1.3) are closely connected in the sense that one implies the other,
hence they are sometimes both referred to as the Hilbert-type inequalities, for brevity.

Perić and Vuković [77], developed a unified treatment of the Hilbert and Hardy-Hilbert
type inequalities with general homogeneous kernel. Further, regarding the notations from
Theorem 1.1, we assume thati = R+, equipped with the non-negativeLebesgue measures
di(xi) = dxi, i = 1,2, . . . ,n. In addition, we have = R

n
+ and dx = dx1dx2 . . .dxn.

Recall that the function K : R
n
+ → R is said to be homogeneous of degree −s, s > 0, if

K(tx) = t−sK(x) for all t > 0. Furthermore, for a = (a1,a2, . . . ,an) ∈ R
n
+, we define

ki(a) =
∫
R

n−1
+

K(ûi)
n


j=1, j �=i

u
a j
j d̂iu, i = 1,2, . . . ,n, (1.5)

where ûi =(u1, . . . ,ui−1,1,ui+1, . . . ,un), d̂iu = du1 . . .dui−1dui+1 . . .dun, and provided that
the above integral converges.
Utilizing Theorem 1.1 one obtains the following equivalent inequalities with general ho-
mogeneous kernel of degree −s:∫

R
n
+

K(x)
n


i=1

fi(xi)dx ≤
n


i=1

k1/pi
i (piAi)

n


i=1

‖x(n−1−s)/pi+i
i fi‖pi (1.6)

and ⎡⎣∫
R+

x(1−P)(n−1−s)−Pn
n

(∫
R

n−1
+

K(x)
n−1


i=1

fi(xi)d̂nx

)P

dxn

⎤⎦ 1
P

≤
n


i=1

k1/pi
i (piAi)

n−1


i=1

‖x(n−1−s)/pi+i
i fi‖pi ,

(1.7)
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1.1 HILBERT-TYPE INEQUALITIES WITH CONJUGATE EXPONENTS 3

where Ai j, i, j = 1,2, . . . ,n, are real parameters such that n
i=1 Ai j = 0 for j = 1,2, . . . ,n,

i = n
j=1 Ai j, Ai = (Ai1,Ai2, . . . ,Ain), i = 1,2, . . . ,n, and ki(·), i = 1,2, . . . ,n, is defined

by (1.5).
To obtain a case of the inequalities with the best possible constants it is natural to impose
the following conditions on parameters Ai j :

p jA ji = s−n− pi(i −Aii), j �= i, i, j ∈ {1,2, . . . ,n}. (1.8)

In that case the constant factors from inequalities (1.6) and (1.7) are simplified to the fol-
lowing form:

L∗ = k1(Ã), (1.9)

where Ã = (Ã1, Ã2, . . . , Ãn) and

Ãi = p1A1i for i �= 1 and Ã1 = pnAn1. (1.10)

Further, by using (1.8) and (1.9), the inequalities (1.6) and (1.7) with the parameters Ai j,
satisfying the relation (1.8) become∫

R
n
+

K(x)
n


i=1

fi(xi)dx ≤ L∗
n


i=1

‖x−Ãi−1/pi
i fi‖pi (1.11)

and ⎡⎣∫
R+

x(1−P)(−1−pnÃn)
n

(∫
R

n−1
+

K(x)
n−1


i=1

fi(xi)d̂nx

)P

dxn

⎤⎦ 1
P

≤ L∗
n−1


i=1

‖x−Ãi−1/pi
i fi‖pi .

(1.12)

Theorem 1.2 ([63]) Let K : R
n
+ → R be a non-negative measurable homogeneous fun-

ction of degree −s, such that for every i = 2,3, . . . ,n,

K(1,t2, . . . ,ti, . . . ,tn) ≤CK(1,t2, . . . ,0, . . . ,tn), −1 ≤ ti ≤ 1, (1.13)

where C is a positive constant. Let the parameters Ãi, i = 1, . . . ,n, be defined by (1.10)
and 0 <  < min1≤i≤n{pi + piÃi}. If the parameters Ai j satisfy the conditions n

i=1 Ai j = 0
for j = 1,2, . . . ,n, and (1.8), then the constant L∗ is the best possible in inequalities (1.11)
and (1.12).

The following result based on Theorem 1.1 can be seen in [88]. Let K : R
n
+ → R and

Ai j, i, j = 1,2, . . . ,n, be as in Theorem 1.2. If ui : (ai,bi) → (0,), i = 1, . . . ,n are strictly
increasing differentiable functions such that ui(ai) = 0 and ui(bi) = , then the following
inequalities hold and are equivalent∫ b1

a1

· · ·
∫ bn

an

K(u1(t1), . . . ,un(tn))
n


i=1

fi(ti)dt1 · · ·dtn

       
  www.element.hr 

 
www.element.hr



4 1 DEFINITIONS AND BASIC RESULTS

< L
n


i=1

[∫ 

0
(ui(ti))−1−piÃi(u′i(ti))

1−pi f pi
i (ti)dti

] 1
pi

(1.14)

and∫ bn

an

(un(tn))(1−P)(−1−pnÃn)

[∫ b1

a1

· · ·
∫ bn−1

an−1

K(u1(t1), . . . ,un(tn))
n−1


i=1

fi(ti)dt1 · · ·dtn−1

]P

dtn

< LP
n−1


i=1

[∫ 

0
(ui(ti))−1−piÃi(u′i(ti))

1−pi f pi
i (ti)dti

] 1
pi

, (1.15)

where the constants L = k(Ã2, . . . , Ãn) and LP are the best possible in inequalities (1.14)
and (1.15).

Since the case n = 2 of inequalities (1.2) and (1.3) will be of special interest to us, we
state it as a separate result. The proof follows directly using substitutions p1 = p, p2 = q,
11 =  and 22 =  . Observe that from 1121 = 1 and 1222 = 1 we have 21 = 1/
and 12 = 1/ (for more details see e.g. [66]).

Theorem 1.3 Let 1
p + 1

q = 1, p > 1, and let  be a measure space with positive  -finite
measures 1 and 2. Let K : ×→ R and  , : → R be non-negative measurable
functions. If the functions F and G are defined by

F p(x) =
∫


K(x,y)−p(y)d2(y), Gq(y) =
∫


K(x,y)−q(x)d1(x), (1.16)

then for all non-negative measurable functions f and g on  the inequalities∫


∫


K(x,y) f (x)g(y)d1(x)d2(y) ≤ ‖F f‖p‖Gg‖q (1.17)

and ∫


G1−p(y)−p(y)
[∫


K(x,y) f (x)d1(x)

]p

d2(y)

≤ ‖F f‖p
p (1.18)

hold and are equivalent.
If 0 < p < 1, then the reverse inequalities in (1.17) and (1.18) are valid, as well as the
inequality ∫


F1−q(x)−q(x)

[∫


K(x,y)g(y)d2(y)
]q

d1(x)

≤ ‖Gg‖q
q. (1.19)

Remark 1.1 The equality in the previous theorem is possible if and only if it holds in the
Hölder inequality, that is, if[

f (x)
(x)
(y)

]p

= C

[
g(y)

(y)
(x)

]q

, a.e. on ,
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1.1 HILBERT-TYPE INEQUALITIES WITH CONJUGATE EXPONENTS 5

where C is a positive constant. In that case we have

f (x) = C1−q(x) and g(y) = C2−p(y) a.e. on , (1.20)

for some constants C1 and C2, which is possible if and only if∫


F(x)−q(x)d1(x) < and
∫


G(y)−p(y)d2(y) < . (1.21)

Otherwise, the inequalities in Theorem 1.3 are strict.

For homogeneous function K(x,y) we define k() (see also definition (1.5)) as

k() =
∫ 

0
K(1,u)u−du, (1.22)

provided that the above integral converges.
In the following theorem the integrals are taken over an arbitrary interval of non-negative
real numbers, i.e. (a,b) ⊆ R+, 0 ≤ a < b ≤ , and the weight functions are chosen to be
power functions.

Theorem 1.4 Let 1
p + 1

q = 1, p > 1, and let K : (a,b)× (a,b) → R be a non-negative
homogeneous function of degree −s, s > 0, strictly decreasing in both variables. If A1 and
A2 are real parameters such that A1 ∈ ( 1−s

q , 1
q ), A2 ∈ ( 1−s

p , 1
p), then for all non-negative

measurable functions f ,g : (a,b) → R the inequalities∫ b

a

∫ b

a
K(x,y) f (x)g(y)dxdy

≤
[∫ b

a

(
k(pA2)−1(pA2,x)

)
x1−s+p(A1−A2) f p(x)dx

] 1
p

×
[∫ b

a

(
k(2− s−qA1)−2(2− s−qA1,y)

)
y1−s+q(A2−A1)gq(y)dy

] 1
q

(1.23)

and ∫ b

a

(
k(2− s−qA1)−2(2− s−qA1,y)

)1−p
y(p−1)(s−1)+p(A1−A2)

×
[∫ b

a
K(x,y) f (x)dx

]p

dy

≤
∫ b

a

(
k(pA2)−1(pA2,x)

)
x1−s+p(A1−A2) f p(x)dx (1.24)

hold and are equivalent, where

1(,x) =
(

a
x

)1− ∫ 1

0
K(1,u)u−du+

(
x
b

)s+−1∫ 1

0
K(u,1)us+−2du,
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6 1 DEFINITIONS AND BASIC RESULTS

2(,y) =
(

a
y

)s+−1∫ 1

0
K(u,1)us+−2du+

(
y
b

)1− ∫ 1

0
K(1,u)u−du.

If 0 < p < 1, b = , and K(x,y) is strictly decreasing in x and strictly increasing in y,
then the reverse inequalities in (1.23) and (1.24) are valid for every A1 ∈ ( 1

q , 1−s
q ) and

A2 ∈ ( 1−s
p , 1

p), as well as the inequality∫ 

a

(
k(pA2)−1(pA2,x)

)1−q
x(q−1)(s−1)+q(A2−A1)

[∫ 

a
K(x,y)g(y)dy

]q
dx

≤
∫ 

a

(
k(2− s−qA1)−2(2− s−qA1,y)

)
y1−s+q(A2−A1)g(y)qdy.

Moreover, if 0 < p < 1, a = 0, and K(x,y) is strictly increasing in x and strictly decreasing
in y, then the reverse inequalities in (1.23) and (1.24) hold for every A1 ∈ ( 1

q , 1−s
q ) and

A2 ∈ ( 1−s
p , 1

p), as well as the inequality

∫ b

0

(
k(pA2)−1(pA2,x)

)1−q
x(q−1)(s−1)+q(A2−A1)

[∫ b

0
K(x,y)g(y)dy

]q

dx

≤
∫ b

0

(
k(2− s−qA1)−2(2− s−qA1,y)

)
y1−s+q(A2−A1)g(y)qdy.

Setting a = 0, b =  in the previous theorem, one obtains the corresponding inequalities
for an arbitrary non-negative homogeneous function of degree −s.

Corollary 1.1 Let 1
p + 1

q = 1, p > 1, and let K : R+ ×R+ → R be a non-negative ho-
mogeneous function of degree −s, s > 0. If A1 and A2 are real parameters such that
A1 ∈ ( 1−s

q , 1
q ), A2 ∈ ( 1−s

p , 1
p), then for all non-negative measurable functions f ,g : R+ →R

the inequalities∫ 

0

∫ 

0
K(x,y) f (x)g(y)dxdy

≤ L

[∫ 

0
x1−s+p(A1−A2) f p(x)dx

] 1
p
[∫ 

0
y1−s+q(A2−A1)gq(y)dy

] 1
q

(1.25)

and ∫ 

0
y(p−1)(s−1)+p(A1−A2)

[∫ 

0
K(x,y) f (x)dx

]p

dy

≤ Lp
∫ 

0
x1−s+p(A1−A2) f p(x)dx (1.26)

hold and are equivalent, where L = k
1
p (pA2)k

1
q (2− s−qA1).

If 0 < p < 1, then the reverse inequalities in (1.25) and (1.26) are valid for every A1 ∈
( 1

q , 1−s
q ) and A2 ∈ ( 1−s

p , 1
p ), as well as the inequality∫ 

0
x(q−1)(s−1)+q(A2−A1)

[∫ 

0
K(x,y)g(y)dy

]q

dx
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1.1 HILBERT-TYPE INEQUALITIES WITH CONJUGATE EXPONENTS 7

≤ Lq
∫ 

0
y1−s+q(A2−A1)gq(y)dy. (1.27)

Inequalities (1.25) and (1.26), as well as their reverse inequalities are equivalent. More-
over, equality in the above relations holds if and only if f = 0 or g = 0 a.e. on R+.

Considering inequalities in Corollary 1.1 with parameters A1 and A2 fulfilling condition

pA2 +qA1 = 2− s, (1.28)

the constant L reduces to L = k(pA2). It has been shown that such constant is the best
possible in the corresponding inequalities.

The following result contains a generalized discrete Hilbert-type inequalities in both
equivalent forms. Krnić et al. (see [65]) considered the weight functions involving real di-
fferentiable functions. By H(r), r > 0, is denoted the set of all non-negative differentiable
functions u : R+ → R satisfying the following conditions:

(i) u is strictly increasing on R+ and there exists x0 ∈ R+ such that u(x0) = 1,

(ii) limx→ u(x) = , u′(x)
[u(x)]r is decreasing on R+.

Theorem 1.5 Let 1
p + 1

q = 1, p > 1, and let s > 0. Further, suppose that A1 ∈(
max{ 1−s

q ,0}, 1
q

)
, A2 ∈

(
max{ 1−s

p ,0}, 1
p

)
, u∈H(qA1) and v∈H(pA2). If K : R+×R+ →

R is a non-negative homogeneous function of degree −s, strictly decreasing in each argu-
ment, then the inequalities




m=1




n=1

K(u(m),v(n))ambn

≤ L

[



m=1

[u(m)]1−s+p(A1−A2)[u′(m)]1−pap
m

] 1
p

×
[




n=1

[v(n)]1−s+q(A2−A1)[v′(n)]1−qbq
n

] 1
q

(1.29)

and




n=1

[v(n)](s−1)(p−1)+p(A1−A2)v′(n)

[



m=1

K(u(m),v(n))am

]p

≤ Lp



m=1

[u(m)](1−s)+p(A1−A2)[u′(m)]1−pap
m (1.30)

hold for all non-negative sequences (am)m∈N, (bn)n∈N, where

L = k
1
p (pA2)k

1
q (2− s−qA1). (1.31)

Moreover, inequalities (1.29) and (1.30) are equivalent.
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8 1 DEFINITIONS AND BASIC RESULTS

If the parameters A1 and A2 satisfy (1.28), that is, pA2 + qA1 = 2− s, then the constant L
from Theorem 1.5 becomes

L∗ = k(pA2). (1.32)

Moreover, it has been shown that the constant L∗ is the best possible in the following
inequalities




m=1




n=1

K(u(m),v(n))ambn ≤ L∗
[




m=1

[u(m)]−1+pqA1[u′(m)]1−pap
m

] 1
p

×
[




n=1

[v(n)]−1+pqA2[v′(n)]1−qbq
n

] 1
q

(1.33)

and




n=1

[v(n)](p−1)(1−pqA2)v′(n)

[



m=1

K(u(m),v(n))am

]p

≤ (L∗)p



m=1

[u(m)]−1+pqA1[u′(m)]1−pap
m. (1.34)

1.2 Hilbert-type Inequalities with Non-conjugate
Exponents

First, we introduce n-dimensional extension of conjugate exponents. Let i = 1,2, . . .n and
let pi, p′i, qi,  satisfy

pi > 1,
1
pi

+
1
p′i

= 1,

n


i=1

1
pi

≥ 1,

 =
1

n−1

n


i=1

1
p′i

and
1
qi

=  − 1
p′i

, i = 1, . . . ,n,

1
qi

> 0, i = 1, . . . ,n.

(1.35)

It follows from these conditions that

1
qi

+(1− ) =
1
pi

, i = 1, . . . ,n, (1.36)
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1.2 HILBERT-TYPE INEQUALITIES WITH NON-CONJUGATE EXPONENTS 9

and
n


i=1

1
qi

+(1− ) = 1. (1.37)

Observe that for  = 1 the above parameters reduce to the conjugate case, that is, n
i=1

1
pi

=
1 and pi = qi, i = 1,2, . . . ,n.

The following extension from [27] may also be regarded as a non-conjugate version of
Theorem 1.1.
Let i be a measure space with  -finite measure i, i = 1,2, . . . ,n. Further, suppose that
K :  → R and i j :  → R, i, j = 1, . . . ,n, are non-negative measurable functions such
that n

i, j=1i j(x j) = 1. If the functions i, i = 1,2, . . . ,n, are defined by

i(xi) =

[∫
̂i

K(x)
n


j=1, j �=i

qi
i j (x j)d̂ i(x)

] 1
qi

(1.38)

then for all non-negative measurable functions fi : → R, i = 1,2, . . . ,n, the inequalities∫


K (x)
n


i=1

fi(xi)d(x) ≤
n


i=1

‖iii fi‖pi (1.39)

and ⎡⎣∫
n

(
1

(nnn)(xn)

∫
̂n

K(x)
n−1


i=1

fi(xi)d̂n(x)

)p′n
d(xn)

⎤⎦
1
p′n

≤
n−1


i=1

‖iii fi‖pi ,

(1.40)

hold and are equivalent.

Remark 1.2 Equality in the previous inequalities is possible if and only if it holds in
Hölder’s inequality. It means that the functions

K(x)ii
pi(xi)

n


j=1, j �=i

qi
i j (x j)i

pi−qi(xi) fi
pi(xi), i = 1,2, . . .n,

and n
i=1(iii fi)pi(xi) are proportional (see also [27]). Hence, we obtain that the equality

in mentioned inequalities can be achieved only if the functions fi and the kernel K are

defined by fi(xi) = Ciii(xi)
qi

1−qi i(xi)
(1− )qi and K(x) = Cn

i=1i
qi(xi), i = 1,2, . . .n,

where C and Ci are arbitrary constants. It is possible only if the functions

n
j=1, j �=i  j j

q j
1−q j (x j)

n
j=1, j �=ii j

q j(x j)
, i = 1,2, . . . ,n
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10 1 DEFINITIONS AND BASIC RESULTS

are adequate constants, and

∫

i

qi(xi)
qi

1−qi
ii (xi)di(xi) < , i = 1,2, . . .n.

Otherwise, the inequalities (1.39) and (1.40) are strict.

Now, suppose that the kernel K : R
n
+ → R is homogeneous of degree −s, s > 0. Taking

into account the notation from Theorem 1.1, we assume that i = R+, equipped with
the non-negative Lebesgue measures di(xi) = dxi, i = 1,2, . . . ,n. In addition, we have

= R
n
+ and dx = dx1dx2 . . .dxn. If the parameters Ai j appearing in functions i j(x j) = x

Ai j
j

satisfy relationsn
i=1 Ai j = 0, j = 1, . . . ,n, then the conditionn

i, j=1 i j(x j) = 1 is fulfilled.
Setting the power weight functions in the inequalities (1.39) and (1.40), one obtains the
following equivalent inequalities

∫
R

n
+

K (x)
n


i=1

fi(xi)dx

≤
n


i=1

k
1
qi
i (qiAi)

n


i=1

‖x(n−1−s)/qi+i
i fi‖pi , (1.41)

and ⎡⎣∫
R+

xn
(1− p′n)(n−1−s)−p′nn

(∫
R

n−1
+

K (x)
n−1


i=1

fi(xi)dx1 · · ·dxn−1

)p′n
dxn

⎤⎦1/p′n

≤
n


i=1

k
1
qi
i (qiAi)

n−1


i=1

‖x(n−1−s)/qi+i
i fi‖pi , (1.42)

where i = n
j=1 Ai j, qiAi = (qiAi1, . . . ,qiAin) and ki(·) is defined by (1.5).

To conclude this section, we restate conditions in (1.35) for the case when n = 2. Let p
and q be real parameters, such that

p > 1, q > 1,
1
p

+
1
q
≥ 1, (1.43)

and let p′ and q′ respectively be their conjugate exponents, that is, 1
p + 1

p′ = 1 and 1
q + 1

q′ =
1. Further, define

 =
1
p′

+
1
q′

(1.44)

and note that 0 <  ≤ 1 for all p and q as in (1.43). Especially,  = 1 holds if and only if
q = p′, that is, only when p and q are mutually conjugate. Otherwise, we have 0 <  < 1.

The two-dimensional version of inequalities (1.39) and (1.40) can be found in [36].
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1.2 HILBERT-TYPE INEQUALITIES WITH NON-CONJUGATE EXPONENTS 11

Theorem 1.6 Let p, q, and  be real parameters as in (1.43) and (1.44), and let 1 and
2 be measure spaces with positive  -finite measures 1 and 2 respectively. Let K be a
non-negative measurable function on 1 ×2,  a measurable, a.e. positive function on
1, and  a measurable, a.e. positive function on 2. If the functions F on 1 and G on
2 are defined by

F(x) =
[∫

2

K(x,y)−q′(y)d2(y)
] 1

q′
, x ∈1, (1.45)

and

G(y) =
[∫

1

K(x,y)−p′(x)d1(x)
] 1

p′
, y ∈2, (1.46)

then for all non-negative measurable functions f on 1 and g on 2 the inequalities∫
1

∫
2

K (x,y) f (x)g(y)d1(x)d2(y) ≤ ‖F f‖p‖Gg‖q (1.47)

and {∫
2

[
(G)−1(y)

∫
1

K (x,y) f (x)d1(x)
]q′

d2(y)

} 1
q′
≤ ‖F f‖p (1.48)

hold and are equivalent.

Applying Theorem 1.6 to non-negative homogeneous functions K :⊆R+×R+ →R

with a negative degree of homogeneity, one obtains the following result. In this way The-
orem 1.4 from previous section can be extended to the case of non-conjugate exponents.

Theorem 1.7 Let p, q, and  be as in (1.43) and (1.44), and let K : (a,b)× (a,b) → R

be a non-negative homogeneous function of degree −s, s > 0, strictly decreasing in both
arguments. Further, suppose that A1 and A2 are real parameters such that A1 ∈

(
1−s
p′ , 1

p′
)
,

A2 ∈
(

1−s
q′ , 1

q′
)
. If the functions 1 and 2 are defined as in the statement of Theorem 1.4,

then for all non-negative measurable functions f and g on (a,b) the inequalities

∫ b

a

∫ b

a
K (x,y) f (x)g(y)dxdy

≤
[∫ b

a

(
k(q′A2)−1(q′A2,x)

) p
q′ x

p
q′ (1−s)+p(A1−A2) f p(x)dx

] 1
p

×
[∫ b

a

(
k(2− s− p′A1)−2(2− s− p′A1,y)

) q
p′ y

q
p′ (1−s)+q(A2−A1)gq(y)dy

] 1
q

(1.49)

and
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[∫ b

a
y

q′
p′ (s−1)+q′(A1−A2)(k(2− s− p′A1)−2(2− s− p′A1,y)

)− q′
p′

×
(∫ b

a
K (x,y) f (x)dx

)q′

dy

] 1
q′

≤
[∫ b

a

(
k(q′A2)−1(q′A2,x)

) p
q′ x

p
q′ (1−s)+p(A1−A2) f p(x)dx

] 1
p

(1.50)

hold and are equivalent. The function k(·) is defined by (1.22).

Setting a = 0, b = in Theorem 1.7, one obtains the corresponding equivalent Hilbert-type
and Hardy-Hilbert-type inequalities.

Corollary 1.2 Assume that p, q, and  are as in (1.43) and (1.44), and K : R+×R+ →R

is a non-negative homogeneous function of degree −s, s > 0. Then the inequalities∫ 

0

∫ 

0
K (x,y) f (x)g(y)dxdy

≤ L′
[∫ 

0
x

p
q′ (1−s)+p(A1−A2) f p(x)dx

] 1
p
[∫ 

0
y

q
p′ (1−s)+q(A2−A1)gq(y)dy

] 1
q

(1.51)

and [∫ 

0
y

q′
p′ (s−1)+q′(A1−A2)

(∫ 

0
K (x,y) f (x)dx

)q′

dy

] 1
q′

≤ L′
[∫ 

0
x

p
q′ (1−s)+p(A1−A2) f p(x)dx

] 1
p

(1.52)

hold for all parameters A1 ∈
(

1−s
p′ , 1

p′
)
, A2 ∈

(
1−s
q′ , 1

q′
)
, and for all non-negative measur-

able functions f and g on R+, where L′ = k
1
q′ (q′A2)k

1
p′ (2− s− p′A1). Moreover, these

inequalities are equivalent.

1.3 Hardy-type Inequalities

In 1925, Hardy stated and proved in [47] the following integral inequality:∫ 

0

(
1
x

∫ x

0
f (t)dt

)p

dx <

(
p

p−1

)p∫ 

0
f p(x)dx, (1.53)
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