
Chapter2
The weighted energy
inequalities for convex
functions

2.1 The weighted square integral inequalities
for the first derivative of the function
of a real variable

We consider the pair of twice continuously differential functions f and g defined on the
closed bounded interval [a,b]. We assume that the function g is convex and the following
requirement is satisfied:

| f ′′(x)| ≤ g′′(x), a ≤ x ≤ b. (2.1)

Let us introduce a family of nonnegative twice continuously differentiableweight functions
H : [a,b]→ R which satisfy the following conditions

H(a) = H(b) = 0, H ′(a) = H ′(b) = 0. (2.2)

Theorem 2.1 Let f , g : [a,b] → R be two twice continuously differentiable functions
which satisfy the requirement (2.1) and let H : [a,b] → R be arbitrary nonnegative weight
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8 2 THE WEIGHTED ENERGY INEQUALITIES FOR CONVEX FUNCTIONS

function such that condition (2.2) is fulfilled. Then the following inequality is valid

b∫
a

(
f ′(x)

)2
H(x)dx ≤

b∫
a

[(
f (x)
2

)2

+
(

sup
a≤t≤b

| f (t)|)g(x)
]
|H ′′(x)|dx. (2.3)

Proof. Using the integration by parts

b∫
a

(
f ′(x)

)2
H(x)dx = f (x) f ′(x)H(x)|b

a
−

b∫
a

( f ′H)′(x) f (x)dx

= −
b∫

a

f (x) f ′(x)H ′(x)dx−
b∫

a

f (x) f ′′(x)H(x)dx

= −1
2

b∫
a

( f 2)′(x)H ′(x)dx−
b∫

a

f (x) f ′′(x)H(x)dx. (2.4)

Similarly, using H ′(a) = H ′(b) = 0,

b∫
a

( f 2)′(x)H ′(x)dx = −
b∫

a

f 2(x)H ′′(x)dx.

Now (2.4) becomes

b∫
a

(
f ′(x)

)2
H(x)dx =

1
2

b∫
a

f 2(x)H ′′(x)dx−
b∫

a

f (x) f ′′(x)H(x)dx

≤ 1
2

b∫
a

f 2(x)H ′′(x)dx+
b∫

a

| f (x)|| f ′′(x)|H(x)dx

≤ 1
2

b∫
a

f 2(x)H ′′(x)dx+ sup
a≤t≤b

| f (t)|
b∫

a

| f ′′(x)|H(x)dx

≤ 1
2

b∫
a

f 2(x)H ′′(x)dx+ sup
a≤t≤b

| f (t)|
b∫

a

g′′(x)H(x)dx

(repeated int. by parts) =
1
2

b∫
a

f 2(x)H ′′(x)dx+ sup
a≤t≤b

| f (t)|
b∫

a

g(x)H ′′(x)dx.
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2.1 THE WEIGHTED SQUARE INTEGRAL INEQUALITIES FOR... 9

Corollary 2.1 Under the same conditions as in the Theorem 2.1, the following bound is
valid

b∫
a

(
f ′(x)

)2
H(x)dx ≤ ‖ f‖

(
1
2
‖ f‖p +‖g‖p

)
‖H ′′‖q (2.5)

where 1 ≤ p ≤ , and p and q are conjugate exponents.

Proof. We apply Hölder inequality to the right-hand side of estimate (2.3).

Remark 2.1 Let us notice that dominance (2.1) is equivalent to the existence of decom-
position of the function f as the difference of two twice continuously differentiable convex
functions, f1 and f2, such that, f (x) = f1(x)− f2(x), a ≤ x ≤ b and g(x) = f1(x)+ f2(x).
Indeed, | f ′′(x)| ≤ g′′(x) is equivalent −g′′(x) ≤ f ′′(x) ≤ g′′(x), that is,

f ′′(x)+g′′(x) ≥ 0, g′′(x)− f ′′(x) ≥ 0.

The latter means that the functions

f1(x) =
1
2
( f (x)+g(x)), f2(x) =

1
2
(g(x)− f (x))

are convex functions such that

f (x) = f1(x)− f2(x), g(x) = f1(x)+ f2(x). (2.6)

Conversely, if f1 and f2 are two twice continuously differentiable convex such that (2.6) is
valid, then it is obvious that we have dominance (2.1).

This remark suggests to write inequality (2.5) in a different form:

b∫
a

( f ′1(x)− f ′2(x))
2H(x)dx ≤ ‖ f1 − f2‖

[
1
2
‖ f1 − f2‖p

+ ‖ f1 + f2‖p]‖H ′′‖q, (2.7)

where 1 ≤ p ≤ .

Corollary 2.2 Let f1 and f2 be twice continuously differentiable convex functions defined
on a closed bounded interval [a,b] and let the weight function H be equal to

H(x) = (x−a)2(b− x)2, a ≤ x ≤ b.

Then the following estimate holds

b∫
a

( f ′1(x)− f ′2(x))
2H(x)dx ≤ ‖ f1 − f2‖[

4
√

3
9

‖ f1 + f2‖

+
2
√

3
9

‖ f1 − f2‖](b−a)3. (2.8)
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10 2 THE WEIGHTED ENERGY INEQUALITIES FOR CONVEX FUNCTIONS

Proof. We have

H ′′(x) = 12x2−12(a+b)x+2(a2+4ab+b2),

and then,

b∫
a

|H ′′(x)| = 2(b−a)3

1∫
0

|6u2−6u+1|du =
4
√

3
9

(b−a)3.

Finally, taking into account the latter expression in estimate (2.7), we come to the desired
inequality (2.8). �

Remark 2.2 Comparing the result stated in Corollary 2.2 with Theorem 2.1 from K.
Shashiashvili and M. Shashiashvili [50], we come to the conclusion that the constant factor
4
√

3
9 is twice less than the constant factor obtained in the latter paper.

2.1.1 The weighted square integral estimates for the
difference of derivatives of two convex functions

Now we consider two arbitrary bounded convex functions f and g on an infinite interval
[0,). It is well known that they are continuous and have finite left and right hand deriva-
tives f ′(x−), f ′(x+) and g′(x−), g′(x+) inside the open interval (0,). We will assume
that there exists a positive number A such that if x ≥ A, we have

| f ′(x−)| ≤C, |g′(x−)| ≤C (2.9)

where C is a certain positive constant.
Let us assume also that the difference of the functions f and g is bounded on the infinite
interval [0,):

sup
x≥0

| f (x)−g(x)| < . (2.10)

Introduce now the family of nonnegative twice continuously differentiable weight func-
tions H(x) defined on the open interval (0,), which satisfy the following conditions:

lim
x→0+

H(x) = 0, lim
x→

H(x) = 0, lim
x→0+

H ′(x) = 0, lim
x→

H ′(x) = 0, (2.11)

and

∫
0

(| f (x)|+ |g(x)|)|H ′′(x)|dx < . (2.12)

Theorem 2.2 For arbitrary bounded convex functions f and g defined on [0,) satisfy-
ing conditions (2.9) and (2.10) and for any nonnegative twice continuously differentiable
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2.1 THE WEIGHTED SQUARE INTEGRAL INEQUALITIES FOR... 11

weight function H, 0 < x < , which satisfy conditions (2.11) and (2.12), the following
energy estimate is valid:

∫
0

( f ′(x−)−g′(x−))2H(x)dx ≤ 3
2

sup
x≥0

| f (x)−g(x)|
∫

0

(| f (x)|+ |g(x)|)|H ′′(x)|dx. (2.13)

Proof. We will prove the theorem in two stages. In the first stage, we verify the validity of
the statement for twice continuously differentiable convex functions satisfying conditions
(2.9) and (2.10), and on second stage we approximate arbitrary convex functions satisfying
the same conditions by smooth ones inside the interval (0,) in an appropriate manner.
Afterwards we will pass with a limit in the previously established estimate.
Let the function F be defined as

F(x) = f (x)−g(x) 0 ≤ x < .

Then F is twice continuously differentiable inside the infinite interval (0,) and at point
zero, it has finite limit F(0+).
Consider the following integral on a finite interval [ ,b] and use in it the integration by
parts formula (here  and b are arbitrary strictly positive numbers),

b∫


F ′(x)(FH)′(x)dx = F ′(x)F(x)H(x)
∣∣∣b

−

b∫


F ′′(x)(F(x)H(x))dx

= F(b)F ′(b)H(b)−F( )F ′( )H( )−
b∫



F ′′(x)F(x)H(x)dx.

(2.14)

The absolute value of the last integral∣∣∣∣ b∫


F ′′(x)F(x)H(x)dx

∣∣∣∣≤ sup
≤x≤b

|F(x)|
b∫



| f ′′(x)−g′′(x)|H(x)dx

≤ sup
≤x≤b

|F(x)|
b∫



( f ′′(x)+g′′(x))H(x)dx (2.15)

since f ′′(x) ≥ 0, g′′(x) ≥ 0, for 0 < x < .
Transforming the integral on the right-hand side of inequality (2.15),

b∫


( f ′′(x)+g′′(x))H(x)dx = ( f ′(x)+g′(x))H(x)
∣∣∣b

−

b∫


( f ′(x)+g′(x))H ′(x)dx

= ( f ′(x)+g′(x))H(x)
∣∣∣b

− ( f (x)+g(x))H ′(x)

∣∣∣b

+

b∫


( f (x)+g(x))H ′′(x)dx.

    
    

    
   w

ww.el
em

en
t.h

r 

 
 

www.el
em

en
t.h

r



12 2 THE WEIGHTED ENERGY INEQUALITIES FOR CONVEX FUNCTIONS

If we substitute the above expression in inequality (2.15), we obtain the estimate∣∣∣∣ b∫


F ′′(x)F(x)H(x)dx

∣∣∣∣ ≤ sup
≤x≤b

|F(x)|
{
| f ′(b)+g′(b)|H(b)

+ | f ′( )+g′( )|H( )+ | f (b)+g(b)||H ′(b)|

+
b∫



| f (x)+g(x)||H ′′(x)|dx

}
.

Thus, from equality (2.14), we come to the following bound:∣∣∣∣ b∫


F ′(x)(FH)′(x)dx

∣∣∣∣≤ |F(b)F ′(b)|H(b)+ |F( )F ′( )|H( )

+ sup
≤x≤b

|F(x)|
{
| f ′(b)+g′(b)|H(b)+ | f ′( )+g′( )|H( )

+ | f (b)+g(b)||H ′(b)|+
b∫



| f (x)+g(x)| · |H ′′(x)|dx

}
. (2.16)

On the other hand, since

b∫


F ′(x)(FH)′(x)dx =
b∫



(F ′(x))2H(x)dx+
b∫



F(x)F ′(x)H ′(x)dx,

we have

b∫


(F ′(x))2H(x)dx =
b∫



F ′(x)(FH)′(x)dx− 1
2

b∫


(F2)′(x)H ′(x)dx

=
b∫



F ′(x)(FH)′(x)dx− 1
2

{
F2(x)H ′(x)

∣∣∣b

−

b∫


F2(x)H ′′(x)dx
}

=
b∫



F ′(x)(FH)′(x)dx− 1
2
F2(b)H ′(b)|+ 1

2
F2( )H ′( )dx+

1
2

b∫


F2(x)H ′′(x)dx (2.17)

Using inequality (2.16) in the expression (2.17), we arrive to the estimate

b∫


(F ′(x))2H(x)dx≤1
2
F2(b)|H ′(b)|+ 1

2
F2( )|H ′( )|+ |F(b)F ′(b)|H(b)
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2.1 THE WEIGHTED SQUARE INTEGRAL INEQUALITIES FOR... 13

+|F2( )|F ′( )|H( )+ sup
≤x≤b

|F(x)|·{3
2

b∫


(| f (x)|+|g(x)|(|H)′′(x)|dx)

+ | f ′(b)+g′(b)|H(b)+ | f ′( )+g′( )|H( )

+ | f (b)+g(b)||H ′(b)|+ | f ( )+g( )H ′( )
}
. (2.18)

It is well known that any convex function is locally absolutely continuous (see, e.g., [59]
Proposition 17 of Chapter 5) that is,

f (x2)− f (x1) =
x2∫

x1

f ′(u−)du, 0 < x1 < x2 < . (2.19)

As the lefthand derivative f ′(x−) of the convex function f is nondecreasing function, we
have

f ′(x1−) ≤ f ′(u−) ≤ f ′(x2−), if 0 < x1 < u < x2 < .

Therefore, from (2.19), we find that

f ′(x1−)(x2− x1) ≤ f (x2)− f (x1) ≤ f ′(x2−)(x2− x1), (2.20)

where 0 < x1 < x2 < .
Taking x1 = x, x2 = 2x, we get

f ′(x−)x ≤ f (2x)− f (x) for x > 0.

On the other hand, letting x1 ↘ 0 in inequality (2.20), we have

f (x2)− f (0+)≤ f ′(x2−)x2,

that is,

f (x)− f (0+) ≤ f ′(x−)x, x > 0.

Ultimately, we obtain the two-sided inequality

f (x)− f (0+) ≤ f ′(x−)x ≤ f (2x)− f (x) for x > 0,

which gives (also for the function g)

lim
x→0+

x f ′(x−) = 0 and lim
x→0+

xg′(x−) = 0. (2.21)

By equality (2.19) and using condition (2.9), we obtain the bound

| f (b)| ≤ | f (A)| ≤C(b−A)≤ | f (A)|+Cb A ≤ b.

But since

| f (A)| ≤ | f (A)|
A

b if A ≤ b.
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14 2 THE WEIGHTED ENERGY INEQUALITIES FOR CONVEX FUNCTIONS

Therefore we can write, if A ≤ b

| f (b)H ′(b)| ≤ | f (A)H ′(b)|+Cb|H ′(b)| ≤
( | f (A)|

A
+C

)
b|H ′(b)| (2.22)

and similarly, if A ≤ b

|g(b)H ′(b)| ≤
( |g(A)|

A
+C

)
b|H ′(b)| for A ≤ b. (2.23)

Using condition (2.11) and bounds (2.22) and (2.23), we get

lim
b→

F2(b)|H ′(b)| ≤ sup
0≤x<

|F(x)| lim
b→

(| f (b)+g(b)|)(|H ′(b)|) = 0,

since

lim
b→

(| f (b)+g(b)|)(|H ′(b)|) = 0.

Moreover, from conditions (2.9) and (2.11), we find

lim
→0+

F2( )|H ′( )| = (| f (0+)−g(0+)|)2 lim
→0+

|H ′( )| = 0,

lim
b→

|F(b)F ′(b−)|H(b)≤ sup
0≤x<

|F(x)| lim
b→

(| f ′(b−)|+ |g′(b−)|)(|H(b)|)

≤ 2C sup
0≤x<

|F(x)| lim
b→

H(b) = 0, (2.24)

lim
b→

(| f ′(b−)|+ |g′(b−)|)(|H(b)|) ≤ 2C lim
b→

H(b) = 0,

lim
→0+

| f ( )+g( )||H ′( )| = |( f (0+)+g(0+))| lim
→0+

|H ′( )| = 0.

Using the mean value theorem, we have

H( )


=
H( )−H(0+)


= H ′( ), where 0 <  <  ,

therefore from condition (2.11), we deduce

lim
→0+

H( )


= 0. (2.25)

Using the limit relations above and (2.21), we find

lim
→0+

|F( )F ′(−)|H( ) ≤ sup
0≤x<

|F(x)|) lim
→0+

| f ′(−)−g′(−)|H( )
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2.1 THE WEIGHTED SQUARE INTEGRAL INEQUALITIES FOR... 15

≤ sup
0≤x<

|F(x)|) lim
→0+

(
| f ′(−)|H( )


+ |g′(−)|H( )



)
= 0, (2.26)

and similarly

lim
→0+

| f ′(−)+g′(−)|H( ) = 0. (2.27)

Now, in inequality (2.18), we pass with limit when b →  and  → 0 . Obviously, the
left-hand side of the inequality increases and the right-hand side is bounded, when b → ,
 → 0, therefore the left-hand side also converges to finite limit, so we come to the required
estimate (2.13).
Next we move to the second stage of the proof. Consider two arbitrary convex functions
f and g defined on [0,), satisfying conditions (2.9) and (2.10). We have to construct
the sequences of twice continuously differentiable (in the open interval (0,)) convex
functions fn and gn approximating, respectively, the functions f and g inside the interval
[0,) in an appropriate manner. To construct such sequences, we will use the following
smoothing function:

(x) =
{

Cexp[ 1
x(x−2) ]; 0 < x < 2,

0; otherwise,

where the factor C is chosen to satisfy the equality

2∫
0

(x)dx = 1.

Define for x ∈ [0,), n ∈ N

fn(x) =
∫

0

n(n(x− y)) f (y)dy,

gn(x) =
∫

0

n(n(x− y))g(y)dy. (2.28)

For arbitrary fixed  > 0 consider the restriction of functions fn and gn on the interval [ ,b]
and let n ≥ 4/ . Then nx ≥ 4 for x ∈ [ ,b].
After we perform in (2.28) the change of variable z = n(x− y), then we find

fn(x) =
nx∫

−
(z) f

(
x− z

n

)
dz,

gn(x) =
nx∫

−
(z)g

(
x− z

n

)
dz,
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16 2 THE WEIGHTED ENERGY INEQUALITIES FOR CONVEX FUNCTIONS

Since the function  is equal to zero outside the interval (0,2), we can write

fn(x) =
2∫

0

(z) f
(
x− z

n

)
dz,

gn(x) =
2∫

0

(z)g
(
x− z

n

)
dz, (2.29)

if x ∈ [ ,b],n ≥ 4/ .
From definition (2.28), it is obvious that the functions fn and gn are infinitely differentiable,
while their convexity follows from the expressions (2.29).
Now we show the uniform convergence of the sequence of functions fn to the function f
on the interval [ ,b] (similarly, the uniform convergence of gn to g). For this purpose, we
use the uniform continuity of the function f on the interval [ 2 ,b]. For fixed  > 0 there

exists ̂ > 0 such that we have

| f (x2)− f (x1)| ≤  if |x2− x1| < ̂ , x1,x2 ∈
[

2

,b

]
.

Take n ≥ max{ 4
 , 4

̂
}. Then for 0 ≤ z ≤ 2 and x ∈ [ ,b], we get

z
n
≤ min

{

̂

}
, x− z

n
≥ 

2
.

Hence ∣∣∣ f (x− z
n

)
− f (x)

∣∣∣≤  for n ≥ max

{
4


,
4

̂

}
and consequently

| fn(x)− f (x)| =
∣∣∣∣ 2∫

0

(z)
(

f
(
x− z

n

)
− f (x)

)
dz

∣∣∣∣≤  (2.30)

for ∈ [ ,b] and n ≥ max

{
4


,
4

̂

}
. (2.31)

Next we need to differentiate (2.29). For this purpose, we will use the following in-
equality ( [18], page 114) concerning convex function f (x) and its left-derivative f ′(x−)

f ′(x1−) ≤ f (x2)− f (x1)
x2− x1

≤ f ′(x2−), 0 < x1 < x2 < .

Now, if we subsitute

x1 =
(
x− z

n

)
−h, x2 = x− z

n
,
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2.1 THE WEIGHTED SQUARE INTEGRAL INEQUALITIES FOR... 17

where 0 < h < 
4 , we have

f ′
((

(x− z
n
−h

)
−
)
≤ f (x− z

n )− f (x− z
n −h)

h
≤ f ′

((
(x− z

n

)
−
)

for x ∈ [ ,b], 0 ≤ z ≤ 2, 0 < h < 
4 , and n ≥ 4

 .
It is well known that the left derivative of the convex function is nondecreasing and, since,

x− z
n
−h ≥ 

4
, x− z

n
≤ b

we can write

f ′
(

4
−
)
≤ f (x− z

n )− f (x− z
n −h)

h
≤ f ′(b−).

This shows that the family of functions


n,x

h
(z) =

f (x− z
n )− f (x− z

n −h)
h

is uniformly bounded by the constant D = | f ′(b−)|+ | f ′( 4−)| if x ∈ [ ,b], 0≤ z≤ 2, 0 <

h < 
4 , and n ≥ ( 4

 ).
Using expression (2.29), we can write

fn(x)− fn(x−h)
h

=
2∫

0

(z)
f (x− z

n)− f (x− z
n −h)

h
dz.

Taking limit as h tends to zero and using dominated convergence theorem, we obtain the
formula

f ′n(x) =
2∫

0

(z) f ′
((

x− z
n
−
))

dz (2.32)

for x ∈ [ ,b] and n ≥ 4
 .

Using (2.32) let us show that for fixed x ∈ [ ,b], the sequence f ′n(x) converges to the left-
derivative f ′(x−).
We have

f ′n(x)− f ′(x−) =
2∫

0

(z)
(

f ′
((

x− z
n
−
))

− f ′(x−)
)

dz, (2.33)

where n ≥ 4
 . Choose arbitrary  > 0. Since the left-derivative f ′(x−) is left continuous,

we can find N() such that (for 0 ≤ z ≤ 2):∣∣∣∣ f ′((x− z
n
−
))

− f ′(x−)
∣∣∣∣≤  if n ≥ N().
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18 2 THE WEIGHTED ENERGY INEQUALITIES FOR CONVEX FUNCTIONS

Then we have

f ′n(x)− f ′(x−) =
2∫

0

(z)dz =  if x ∈ [ ,b], n ≥ max

{
4
 ′ ,N()

}
,

that is,

lim
n→

f ′n(x) = f ′(x−), x ∈ [ ,b].

Similarly,

lim
n→

g′n(x) = g′(x−)if x ∈ [ ,b]. (2.34)

Now we apply (2.18) estimate for the function Fn(x) = fn(x)−gn(x) on [ ,b],

b∫


(F ′
n(x))

2H(x)dx ≤ 1
2
F2

n (b)|H ′(b)|+ 1
2
F2

n ( )|H ′( )|+ |Fn(b)F ′
n(b)|H(b)

+ |F2
n ( )|F ′

n( )|H( )+ sup
≤x≤b

|Fn(x)|

× {3
2

b∫


(| fn(x)|+ |gn(x)|(|H)′′(x)|dx)+ | f ′n(b)+g′n(b)|H(b)

+ | f ′n( )+g′n( )|H( )+ | fn(b)+gn(b)||H ′(b)|
+ | fn( )+gn( )H ′( )

}
. (2.35)

For x ∈ [ ,b], 0 ≤ z ≤ 2 and n ≥ 4
 , we have

f ′
(

2
−
)
≤ f ′

((
x− z

n
−
))

≤ f ′(b−).

Multiplying this inequality by (z) and integrating by z over (0,2) using (2.32), we have

f ′
(

2
−
)
≤ f ′n(x) ≤ f ′(b−),

and then

| f ′n(x)| ≤ | f ′(b−)|+
∣∣∣∣ f ′(

2
−
)∣∣∣∣, if x ∈ [ ,b], n ≥ 4


.

Similarly, for the functions gn(x), we have

|g′n(x)| ≤ |g′(b−)|+
∣∣∣∣g′(

2
−
)∣∣∣∣,
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From the latter bounds, we obtain

|F ′
n(x)| ≤ | f ′(b−)|+ |g′(b−)|+

∣∣∣∣ f ′(
2
−
)∣∣∣∣+ ∣∣∣∣g′(

2
−
)∣∣∣∣

if x ∈ [ ,b] and n ≥ 4
 .

Hence the sequence of the functions F ′
n is uniformly bounded on the interval [ ,b] for

n ≥ 4
 . Thus we can apply the bounded convergence theorem in the left-hand side of

inequality (2.35). Letting n to infinity, we will have

b∫


(F ′(x−))2H(x)dx ≤ 1
2
F2(b)|H ′(b)|+ 1

2
F2( )|H ′( )|+ |F(b)F ′(b−)|H(b)

+ |F2( )|F ′(−)|H( )+

+‖ f‖L × {3
2

b∫


(| f (x)|+ |g(x)|(|H)′′(x)|dx)+ | f ′(b−)+g′(b−)|H(b)

+ | f ′(−)+g′(−)|H( )+ | f (b)+g(b)||H ′(b)|
+ | f ( )+g( )H ′( )

}
. (2.36)

The left-hand side of inequality (2.36) obviously increases when b→ and  → 0 and the
right-hand side is bounded by the assumption (2.12) and the limit relations (2.24)-(2.27).
Therefore passing onto limit b→ and  → 0 in inequality (2.36), we arrive to the desired
estimate (2.13). �
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