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Zipf-Mandelbrot law,
properties and its
generalizations
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Abstract. Despite a wide spread applications of Zipf-Mandelbrot law;, there is quite
small amount of results concerning analytical properties on distribution law. On
the first stage, we examine some monotonicity properties of the law, we derive the
whole variety of its lower and upper estimations. We then further refine our results
using some well-known inequalities such as Holder and Lyapunov inequality.

On the second stage we consider the case when total mass of Zipf-Mandelbrot
law is spread all over positive integer, and then we come to Hurwitz {—function.
As we show, it is very natural first to examine properties of Hurwitz {—function
to derive properties of Zipf-Mandelbrot law. Using some well-known inequalities
such as Chebyshev’s and Lyapunov’s inequality we are able to deduce a whole
variety of theoretical characterizations that include, among others, log-convexity,
log-subadditivity, exponential convexity.

On the third stage, we generalize Zipf-Mandelbrot law using maximization of
Shannon entropy, as we. get hybrid Zipf-Mandelbrot law. It is interesting that ex-
amination of its densities provides some new insights of Lerch’s transcendent.
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1.1 Some classical inequalities
and Zipf-Mandelbrot law

1.1.1 Introduction

ForNeN, g>0,s>0, k€ {1,2,...,N}, Zipf-Mandelbrot probability mass function is
defined with

L/(k §
f(k,NaCIaS):M7 (1.1
Hy,g.s
where
X1
Hygs= ), 77> (1.2)
2q5S 1:21 (l+q)s
NEN, ¢>0,s>0, ke {1,2,. 55N} (see [5]).
Proposition 1.1 Fors>¢>0
(Nf(kN,q,5)""* < (Nf(k,N,g,0) " (13)
Proof. In [6] itis proved, after W is interpreted as power mean depending on s, that
s+— Nf(k,N,q,s) is a decreasing function. O
Denote m = %, M= % and observe m =min{x;: i=1,...,N}, M =max{x;: i =
I,...,N}.
Further, for s, t > 0 let
M —m®
‘u = Mt 7mt
and
1 121
INT m*M' — m' M® s
B=(E)' = : (1.4)
s (L—s/t) (M. —m!)
Theorem 1.1 For probability mass function (1.39).we have following inequalities, for
O<t<s
a)
N§71 s/t 31 s/t
g SN,git)) < f(kN,q.s) <N (f(k,N,q,1))"", (1.5)
1,5
b)
Mt 3 MS S
m_ < N(M'mf M), (1.6)

f(kaNaLIas) f(k>N>Q>t)
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Proof.
a) It follows, for 0 <t < s,

(Nf(k,N,q,5))"/* < (Nf(k,N,q,1))'"",

hence
F(k,N,q,5) <N~ (f(k,N,gi1))"".

Now we prove left hand side inequality. First, observe here that m = min{x; : i=1,...,N},
M =max{x;: i=1,...,N}.
Using Beesack inequality (see [2], p. 334; [13],p. 110)

MY () < BisMy (vi), 0 <1 <5, (1.7)
where
2 O (u_t)% m*M' — m' M* s
7 s (1—s/t)(M' —m") i
It follows

Ni~! ;
(kN g.5) > —— (f(k.N.g.0)"

1,

b) From Goldman inequality (see [13], p. 109.),0 <t <'s,
(M =) (M (ep) Y = (M° =) MY ()Y < MY m® — M
Hence, for 0 <t <s,

M —m M —m?® . )
— <N (M'm*—Mn).
f(k,N,q,s)  f(k,N,q,t) ~ ( )

Remark 1.1 Another type of a lower bound for f(k;IV,q,s) can be derived from another
Beesack inequality (see [2], p. 336; [13], p. 111):

MY () = G + MY (),

where
1
<L m*M’ +s—t(ut)ﬁ s
BT\ M —m t K ’

X 1
v (C,,sHNf(kaquf)ﬁ)s.

concluding

f(k,N,q,s) >
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1.1.2 Zipf law estimations

If we take ¢ = 0 in probability mass function (1.39) we get Zipf law with probability mass
function

1
k,N,s) = —— 1.8
JUN.S) = fo— (18)
where
N
Hys=Y ~. (1.9)

For s = 1 Hy = Hy,1 we get N—th harmonic number.
1° (caset = 1)
Using Proposition 1.2 forg =0, = 1 and s >.1 we have

(NF(k,N,$))5 £ Nf(k,N,1)

ie. yot
SN.S) < o (1.10)
We can derive further bounds using well-known inequalities for harmonic numbers.
Using Schlomlich-Lemonnier inequalities (see [12], p. 118)
In(N+1)<Hy<1+In(N+1) (1.11)
and (1.10) we get
f(k,N,s) <N In S (N+1).
Also, using (see [12], p. 120)
r(1—(N+1)"")y < H, < r(N'" = 1) +1 (1.12)

we have
f(k,N,s) < N (rk(1 = (N+ 1)) =

Similarly, we have a list of inequalities with Euler constant ¥ = limy_,(Hy — InN) (see
[12], p. 120):

Y+IN+ 5 — o < Hy <¥+InN+ 5 (1.13)
y+lnN+m < Hy < y+InN+ 55 (1.14)
Y+In(N+1/2)+ 5 N+1>2 <HN<y+1n(N+1/2) T (1.15)

7
<Y+In(N41/2)+ 24N+1/2) 960N+

Now, using (1.10) and left-hand side inequalities in (1.13)-(1.16) we get

-5
flk,N,s) <k SN*1 <y+lnN+ - ﬁ)
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FUN,s5) < kN (y+InN+ k)

—S

f(k,N,s) <k™*N*~ 1(Y+IH(N+1/2) m)

f(k,N,s) <k *N*~ 1(V+ln(N+1/2) AN —96gN“)

Similarly, using Proposition 1.2 forg =0, t =1 and 0 <5 < 1 we have
(NF(k,N,s))* 2 NF(N, 1)
ie.
stl

~ KHy

FRN 5y

and then using (1.13)-(1.16) we will get lower bounds

—S

f&,Nys) > kSN~ (y+InN + 5)

f(k,N,S) > kSN (Y+lnN+ m)i

JkN,8) > KN (v In(N+1/2)+ g )

JOGN,s) > kN1 (y+ln(N+ 1/2)+ 24(N+11/2)2 - 960(1\7/+l)4)

2° (case t =2)
Using Proposition 1.2 for g =0, t =2 and s > 2 we have

(NF(N,5))E < NF(N, 1) = (NE2Hy3)?

i.e.
f(k,N,s) <N>7'k°Hy 3.

Appling Proposition 1.2 for g =0, t =2 and 0 < s < 2 we get reversed inequality

FN,s) > N3TKH 3.

Now we use the next estimations for Hy,» (see [12] p. 121-122;[?])

> N+1/2 n? N+1/2
TN gy B N 0304555
6 NiNtd N6 TNIINY1/3

and (see [12] p. 122)

HN2>8

1
oap N2

13 1
HN’22§—m,N>1

13 1
HN,2Z§_N+2aN>2

(1.17)

(1.18)

(1.19)

(1.20)

(1.21)
(1.22)
(1.23)
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(1.24)
(1.25)

10N—1
HN,2 < 6N13 ? N=>1

Hy,<2—%,N>2.

Hence, fors > 2

flk,N,s) < N3~ (2 — BH2 -5 N > 1
S -
f(kN,s) §N21k3<§ﬁ) N> L

and for0 < s <2
S 1, 2 N+1/2 _s
e Nys) > N3~k (B — oty =3 N> 1

S
ION—1\"2 .
o) Nz

Flk,N,s) > N3~ (
f(k,N,s) <N~ (

s

3
+) 2 N>2.

1.1.3 Zipf law and Goldman inequality
From Goldman inequality we derived (1.6). Forg =0, 0 <t < s, (nowm =k/N, M = k)
_ (kN s _ (ks K t

f(k,N,s)  fk,N,i) — N

1° for s >t = 1 we have then

k=% kK- (%) AN
rns i <Y (&) -+ v)

i.e.
1 ngl(Nfl)
v L _ 1.27
f( 3 3S) =k N_NS—|—(NS—1>HN ( )

Using (1.13)-(1.16) we get the following sequence of lower bounds for f(k,N,s), s > 1,

€1, NTHN-1) .
fkNss) > N=Ns+(Ns—1) (y+InN+ 55 )’ N>1
s—1
kNys) > L N (N-1) N> 1,
£GN5) > ¢ N—Ns+(Ns—1) y+1nN+72(N[1))
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s—1
kN,s) > & () 7™
f( S) k? NfN'LF(NS*l)()H’]n N+1/2 24N2)

> - v e
N—Ns+(N$—1) <y+ln(N+1/2)

1 7
24 N+1/2)2 960(N+1)4>

2°for0 <t <s=1in(1.26)

1 NYN—T)
K N =N'+(N'—1)Hy'
Using (1.13)-(1.16) we get the following sequence of upper bounds for f(k,N,z), t < 1,

flk,N,1) < (1.28)

N-H(N-1)

k.Nt) <4 N>
1 ) k N,Nt+(Nt71)(V+lnN+ﬁ*w%)
s—1
kN 1)< S oo N
f( ) K NfNS+(Ns*1)(Y+lnN+2(N+l)>
t—1
Wt b NHN-1) N> 1
W-Nr =) (1204 5 )
t—1
FNot) < - v e

—L 7
NthHN’*l)(yH" N+1/2)+ 24( N+l/2) 960(N+l)4>

3° Fors >t = 2 in (1.26)
k2_(%)2 ks_(%)s 5 \* ) k 2
v~ s <V (2 (%) % ()

1 N*2(N? -1

FN.5) > v e,
kS N*N371+(N371)HN’2

Combining (1.30) with (1.20), (1.24) and (1.25) we get the sequence of inequalities

i.e.

N> 1. (1.29)

N=2(N?-1)

N+1/2
N-Ng (g 1><77N2+J;V+/1/3)

1 .
.f(k7N7S)>ks' 7]V>l,

N2(N?-1)

SR e (B

N > 1;

. N2(N2-1)
KON-NTH (NS 1) (2— 3)

N> 2.

4° Fort > s =2 in (1.26)

N~ T < ("t (ﬁ)z - <]5V))
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i.e.
N'2(N?—1)

1
K N—N-T4+(N—1)Hy,’
Combining (1.30) with (1.20), (1.21), (1.22) and (1.23) we get the sequence of inequalities

N> 1. (1.30)

Jk,N,1) <

N2(N?-1)
f(k,N,1) < & , N>
B e
f(k,N,S) § kl’ . NI—2<N2,1) \ N> 1’
nwton-) (o)
3
NN A1
fleN) < & L N> 1
5
FRN1) < & alim) N>2.
_ 13 1
N—N! 1+(N’71)<§7N+—2>
3

1.1.4 Further bounds via Lyapunov and Hoélder inequality

Theorem 1.2 For probability mass function (1.39) we have the following inequality, for
O<r<s<t

[Nf(k,N,q,0)]
INf(k,N,g,1)]

Proof. Using Lyapunov inequality (see [12], p. 34, [13] p. 117). ForO < r < s < ¢

A N B R S A A N O R TA W R
N;(Hq) = N12<i+q) Nl.zl(qu) (1.32)

We can rewrite this as

- [Nf(k,N,qJ)]t se—r) (1.31)

“
|
<

(1.33)

~—
—

INF(N,g.5)) 5 < {INFkN.q.0) 7} {INf e g.0]

Applying A-G inequality on right-hand side of (1.59) we have

ts—r

NF N g.9)) 8 < S VAN, A+ 2D NN, g.0)]
which we can rewrite as
[NF(kNsgDL " = [NF(N.g.r)] 7 _ s(e=r)
INF(k,Nyqyt)] T — [INF(N,gs)] 5 7E=5)
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Theorem 1.3 For a > 1, let (at, B) be a pair of Holder conjugates. Then for r, s > 0 we
have

FUN, g5 +1) > f (k.N,q,50) % f (k,N, g,rB) P . (1.34)

P

Proof. Using Holder inequality for sequences { (%) ci=1,...,N } and
s

{(lﬂ) = L...,N},wehave

i+q
rts ro\ 1/ s\ /P
i(k+q>+< ’ﬁ(k—i—q)a \ i(k—i—q)ﬁ
Si\itq “\S\itg Si\itq

ie.
1 L
(f (k:N,q.s+1)) F< f (kN q,50) "% f (k,N.q,rB) 7.
O
Let
() !
N , s> rf
m= o (1.35)
kg @
Trg , S0 < }’ﬁ
and
(k+q)yrﬁ
T ,so>rf
M=\ (1.36)
kg \ @
<%) , so<rf
Theorem 1.4 For a > 1, let (e, ) be a pair of Holder conjugates. Then for r, s > 0 we

have
M—m mM% — Mm®% MY% —m¥%

+ < )
f(k,N,q,SOC) f(kaNaqarﬁ) f(kaNaqar+S)
where m and M are defined with (1.35) and (1.36) respectively.

(1.37)

Proof. Follows from a conversion of the Holder inequality and a discreet version of the
linear functional in Theorem 4.14, [13], p. 114, applied for sequences

r )
{(lf+q> : i:17...7N} and {(lﬁq) : i:17...7N}.
1+q 1+q

Another type of conversion of the Holder inequality is given in [13], Theorem 4.16, p.
115. Similarly, as in the proof of Theorem 1.4, using discreet version of a linear functional,
we get the next theorem.

O

Theorem 1.5 Under the same assumptions as in Theorem 1.4, the following result holds
1
a-a B (M —m®)
1
(M —m) & (mM® — Mm®)F

=~

ST

f(k,N,q,r+s) < (f (k,N,q,rB))F .

(1.38)

(f (k’ N’ Q’ Sa))
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1.2 Analytical properties of Zipf-Mandelbrot law and
Hurwitz {—function

ForNeN, ¢>0,s>0, ke {1,2,...,N}, we can rewrite Zipf-Mandelbrot law (proba-
bility mass function) in the following form

1/(k+4q)°
f(k,N,q,s) = ———+, (1.39)
(N-0:%) = T, )
where
1
C(N,s,q) =D, — , (1.40)
X Z‘l (i+q)
NeN, g>0,s>0, ke {1,2,...,N}. If total number of words N tends to infinity we
denote i )
1/(k+q)°
fk7q7S = T s/ N (141)
ha:9) = ")
where
- 1
(s,q) =), 7+ (1.42)
(5:4) Z{ (i+q)

we recognize as Hurwitz {—function. This infinite case, when total mass is spread over
all set of positive integers, particularly, is studied in [9]. Note here, that we use. more
suitable version of Hurwitz { function (see also [1]), since in the classical definition sum
starts from zero and ¢ > 0. However, this fact does not alter our conclusions about Hurwitz
£ —function.

The are also quite different interpretation of Zipf-Mandelbrot law. As it is pointed
out in [11] (see also [3], [15]), parameters in (1.39) can be interpreted in the following
way: N is the number of species present and the parameters g and s have an ecological
interpretation: g represents the diversity of the environment and s the predictability of the
ecosystem, i.e. the average probability of the appearance of a species.

1.2.1 Monotonicity properties

As starting point, we use the next proposition on inequalities for sums of positive order
({12, pp. 361, [13, pp. 165]).

Proposition 1.2 [fa; >0, i e Nthenfor0 <t <s

1 1
(iaf) §<2a§> ) (1.43)
i=1 i=1
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Theorem 1.6

i) The function s — [{(N,s,q)]"/* is decreasing i.e. for s >t> 0

[CN.5,9)]'" < [EN,2, 901"

ii) The function s — [f(k,N,q,s)|"/" is increasing.i.e-for s >t > 0

PN, g, )1 = [(f(k,N,q,0)]' "
iii) The function s — [(s,q)]"/* is-decreasing i.e. for s>t >0
(&6, <[5

iv) The function s — [F(kyq,s)]"/" is increasing i.e. fors >t >0

£ (kg )" = [(F(k, g0

Proof.
1) We use the Proposition 1.2, for

ii) Follows from i)-part and

N
k+q>
(k+q)’C(N,s,q). (1.44)
f (k N,q,s) Z{ <l+q o N
iii) Use Proposition 1.2 for a; = ﬁ, ieN.
iv) Follows from iii)-part and
e (44) C(s.0) (145)
N q $:q)- .
f(k,q,s)
O
Theorem 1.7 The function
s— (Nf(k,N,q,s))"/* (1.46)

is decreasing i.e. for s>t >0

(Nf(k,N,q,5)) " < (NF(k,N,q.1)"". (1.47)
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Proof. From (1.44) it follows

1 1Y /k §
7=—2(.+q) ; (1.48)
Nf(k,N,q,s) NS \it+q

1 (.
N = \itq

Denote x; = 'lfi—;’, i=1,...,N. Then the right-hand side of (1.49) is the power mean

ie.
1/s

(Nf(k,N.q,s5))""/* = (1.49)

1/s
M[S] l Zx, ] .

Using well-known fact, that s — M[ 3 (x N) is increasing function (see for example [12, 13])
we conclude that the function

s (Nf(k,N,q,5)"* (1.50)

is decreasing. O

1.2.2 Log-convexity and exponential convexity

Let us recall well-known Lyapunov inequality, for sequences ([12, pp. 34], [13, pp. 117]).

Proposition 1.3 [fa; >0, i e N, thenforO <r<s<t

t—r —s S—r
(2@) < (24) (24) : (1.51)
i=1 i=1 i=1

If weseta; = ——, i€ Nin (1.51) we get

t+q ’

Corollary 1.1 Forl <r<s<t

" (s,q) < C'7(rq)E° " (1,9). (1.52)

In the next theorem we prove, log-concavity of s — f(k,N,q,s) and log-convexity of
s E(s,9)-

Theorem 1.8 Let A € (0,1).

i) ForO<r<t,

C(N7Ar+ (1 _A’)LQ) < CA(N’HQ)CliA (N’I>Q)'
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ii) For0 <r<t,
(FkN, g 2r+ (1= 2)0) " < (f(kNq.7) " (f(k.N.go1) .
iii) Forl <r<t,
CAr+(1=A)t,q) < é’a(V7CI)C17/l(t,q),
iv) Forl <r<t,
(Fk g2+ (1= A)0) ™ < (k@)™ (ko) ™7,

Proof.
i)ForO<r<tand A € (0,1) we set

1 .
—.,i=1,...,N;
{ itq’ ) 34V
i {0, i>N.
ands=Ar—+ (1 —A)tin (L51):

N L\ Ar- A t—r N Y At=r) sy LV (1=A)(t—r)
[ < e .
(i_zl(iw) ) _<i_21(i+q> ) (,_21<l+q))

ii) Follows from (1.44) and i)-part.

iii) We seta; = - and s = Ar+ (1 —A)t in (1.51).

iv) Follows from iii)-part and (1.45). O
We can conclude even more since this result can be extended to exponential convexity

[4].
Definition 1.1 A function h: I — R is exponentially convex on an interval I C R if it is

continuous and
Xi+x
2 &i&jh < ‘ ’) >0
i,j=1

foralln € Nand all choices & e R, x; €1, i=1,...,n

Theorem 1.9 The function s — {(s,q) is exponentially convex function on (1,e0).

Proof. Foragivenn € Nlet &, €R, s, € (1,0) (m=1,...,n) we have

S;+ Sm g it
S 8L (Z— ) 28 oge s (1.53)
Im=1 I,m=1 i=l (i+q)” 2
=Y ¥ &&—— (1.54)
i=11,m=1 (i+q)” 2
oo n 2
=y(y —L—-) >o0 (1.55)
i=1 \m=1 (i+q) 2

Since the function.s — (s, ¢) is continuous function on (1,0), we conclude its exponential
convexity on (1,00). O

Using (1.45) we have also the next corollary.
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Corollary 1.2 The function s — (f(k,q,s)Y1 is exponentially convex function.on (1,0).

Proof. This is consequence of (1.45) and the fact that exponential convexity is closed under
finite multiplication of exponentially convex functions. g

D n
Corollary 1.3 The matrices [({(252 ,q))]zmzl and [(f(k,q, Sy ) 1:|lm:l are posi-

tive semi definite for alln € N, sy1,...,s, in (1,0).

We can also deduce exponential convexity from diversity point of view, notion mentioned
in the introduction.

Theorem 1.10 Foranys > 0, N € N, the function
g+ L(N,s,q)
is exponentially convex on (0,e0).

Proof. Fork=1,...,N, using the Laplace transform,

tS*
/ e~ (k+q)t dt
0

and the fact

i &igjexp { <k+ qi;qj) t] —e M (ﬁ; Eiexp <%Z)>2 >0,

i,j=1

we conclude exponential convexity of the function g — Tar +q) on (0,00). Now g+ {(N,s,q)

is exponentially convex on (0,e0) as a finite sum of exponentially convex functions. O

Theorem 1.11 For any s > 1, the function
q—E(s:9)
is exponentially convex on (0,00).

Proof. Using Mellin transformation

1 co tsflef(qul)t
C(s.q) = W/O e

£ sen (85 1)) - (Bpew(-452) 2

we conclude exponential convexity of g — {(s,q) on (0,). O

and
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Corollary 1.4 For s > 1, the matrix [{ (s, (%))]Zmzl is positive-semi definite for all
n E N7 ql"" 7qn E (0’00).
Corollary 1.5 Forany s > 1, the function

g+ C(s,q)

is log-convex on (0,e0).

1.2.3 Log subadditivity
Let us recall Chebyshev’s inequality (see [12, pp. 27], [13, pp. 197]).

Theorem 1.12 Let (ay,...,an) and (by;...,bn) be two N—tuples of real numbers such
that
(al_aj>(bl_b]> 207 foriaj: 1a"'7Na

and (wi,...,wn) be a positive n—tuple. Then

N N n N
(2 Wi) ( Widibi> > (2 w,~a,~> (2 wibi>. (1.56)
i-1 i=1 i=1 i=1

Theorem 1.13 The function s — Nf(k,N,q,s) is log subadditive, i.e. for s,r > 0
Nf(k,N,q,s+r) < [Nf(k,N,q,)] [Nf(k,N.q,r)]. (1.57)

Proof. We apply Chebyshev’s inequality (1.79) for

k ’ k ' 1
ai = .—HI , b= ,—HI s wi=—;i=1,...,N.
i+q i+q N

Hence we get

N&S\it+g T\NA \itg N4Z=\itg

1 1 1
= >
Nf(k,N,q,s+r) ~ Nf(k;N,q,s) Nf(k,N,q,r)’

concluding (1.81). O

Theorem 1.14 The functionu + |f(k,N,q,u™")] " is log-convex.

Proof. Using Lyapunovinequality in Proposition 1.3, for 0 < r <s <t

SED) =(E0) GeR) 0w
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Using (1.49) we rewrite this as

ri=s
S i=

S—F
t—r

Now we substitute 7 = 1/x, r=1/y, A = ¢

a9 < (e Y {raman Y T o)

*=L in (1.59), and since I —4 = L=2 5 =
[Ax+(1—=A)y]"", we have

rleN.g (-] < v )Y gy

concluding log-convexity of the function u ~ [ f(k,N,q, u! )] o

)

O
1.2.4 Gini means and further monotonicity
For positive n—tuple (ay,...,a,), ¢, € R, Gini means are defined with
. 1
DA
5 : o # B;
G(a,B) = Za (1.60)
n n
exp| X aflna;/ ¥ af‘) , o= 0.
i=1 i=1
It is known then see [13, pp. 119],
G(ai,Br) < G(on, Ba), (1.61)

for oy < g, B1 < Bo, ou # B, a2 # Po-
If we choose a; = % in (1.60) we will get Zip-Mandelbrot means:

o B
(k+z.])O‘HN.q7a .
[(k+ q)ag(N?S7 OC)] of(kN.q.0) eXp (7%12(]{7]\77(]7 OC)) , 0= ﬁ

(1.62)
where

E(kacha) = -

M=

f(k7N7q7 Ot)lnf(k,N,q, OC)
k:

1

denotes Shannon entropy of the law (1.39) (for related results see also [?])
Using (1.86) we can now formulate the next theorem.

Theorem 1.15 For 0 <oy < 0, 0 < By < Bo, o4 # B, 0 # Bo;

Z(ay,Br) < Z(ow, Bo). (1.63)
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The expectation of the Zipf-Mandelbrot law is

ul R “k+g—q ((N,s—1q)
L NG9 =7 o X gy~ )y

This is a decreasing function over s, as the next theorem shows.

Theorem 1.16 The function
5 — C(N,S* lyq)
C(Nss,q)

is decreasing on R, .

Proof. Wesetai:%, i=1,...,Nand o= s—1, B =sin (1.60).

i+

According (1.86), for 0 < s < t, we have
({(N,sl,cn)l _ <4<N,r1,q>>1
E(N,s,9) ~\ CN.q)
Of course, result can be extended to Hurwitz —function.

Corollary 1.6 The function
s6—-La)
(s.q)

S —

is decreasing on R .

Remark 1.2 General remark in this section is that parameters o, 8 in (1.85) could be
any real numbers, so Theorems 1.27 and 1.16 are also valid on R? and R, respectively.

1.3 Hybrid Zipf-Mandelbrot law

There is a unified approach, maximization of Shannon entropy, that naturally follows the
path of generalization from Zipf’s to hybrid Zipf’s law. Extending this idea, in this section,
we make transition from Zipf-Mandelbrot to hybrid Zipf-Mandelbrot law. It is interesting
that examination of its densities provides some new insights of Lerch’s transcendent (see

[7D.

1.3.1 Shannon entropy and Zipf-Mandelbrot law

Here we extend use the maximum entropy approach in [14] to Zipf’s law in order to deduce
Zipf-Mandelbrot law, i.e. we maximize

S=-=Y pilnp; (1.64)
el

subject to some constraints. Trivial constraint is of course Y p; = 1.
il
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Theorem 1.17 Let I = {1,...,N} or I = N. For a given ¢ > 0 and x >0, a proba-
bility distribution, concentrated on I, that maximizes Shannon entropy under additional
constraint

Y peln(k+q) = x (1.65)
kel

is Zipf-Mandelbrot law.

Proof. If I ={1,...,N}, in a very standard procedure, we set two Lagrange multipliers A
and s and consider expression

N N
Pklnpk* <2Pk‘ 1) =5 <2pkln(k+q)x>-

k=1 k=1

(o)
H
TMz

Just for convenience we can, of course, replace A «— InA — 1, and now conider

k=1 k=1

S=— g: prlnpy — ln)t—l)(ipk—l>—s<§:pkln(k+q)—x>

instead.
From §,, =0, k=1,...,N we deduce

1
PE= 3k g

N
and combining this with Y, p; = 1, we have
k=1

where s > 0, concluding
_ Y(k+q)

- C(N,s,q)’

The case I = N is treated in a similar manner with the restriction s > 1 :
_ 1/(k+q)

C(siq)>

k=1,....N.

keN.

Remark 1.3

(i) If X is the random variable with values at I and probability law (p;, i € I), then y
from (1.65) is in fact expectation of the random variable In(X 4 ¢), which depends
onX.
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(i) Observe here that for Zipf-Mandelbrot law (1.39) Shannon entropy (1.64) can be
bounded from above (see [10]):

oo

2 k q5S lnf k g8 ) < - Zf(kaqas)lnqu (1.66)

k=1

where (g : k € N) is any sequence of positive numbers such that Y, ¢; = 1.
k=1

1.3.2 Hybrid Zipf-Mandelbrot.law

The same technique of maximum entropy we apply with one additional constraint. The
derived probability law we will call hybrid Zipf-Mandelbrot law.

Theorem 1.18 LetI={1,...,N} orl =N. Fora given g >0, y > 0and u > 0, a prob-
ability distribution, concentrated on I, that maximizes Shannon entropy under additional
constraints

Yopln(k+q) = x, Y kpi =K
kel kel

is hybrid Zipf-Mandelbrot law:

Wk
T OrAT R
where .
Dj (s,q,w) = 2 (k—v:q)“'
kel
Proof. We consider first I = {1,...,N} and then we maximize

N N N N
32pklnpk+lnw<2kpku) (In2—1) <2Pk1> <2Pklnk+q X)'
=1 k=1 k=1

k=1

Uy

=0, k=1,...,N gives us

—In pr+klnw=InA =sln(k+¢g) =0,

ie.
P A k+a)
N N
Using ¥ pr=1,wegetA =Y (k +q) and we recognize this as the partial sum of Lerch’s
k=1 k=

transcendent

N
v(s.q,w 2

k:l
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withw > 0,5 > 0.
In the infinite case / = N we have restrictions either w < 1,5 > 0orw = 1,5 > 1 and

fi wt
& (k+q)

we recognize as Lerch’s transcendent that we will denote with @*(s,q,w). O

Let us denote

Wk

N,k = k=1,...,.N 1.67
fh(wa ) 7q7S) (k+q)5q)X/(S,q,W)’ ) ) ( )

and

wk

1.68
kT (s.qm) (1.68)

Ju(w,k,q,s) =

hybrid Zipf-Mandelbrot law on finite and infinite state space, respectively.

Remark 1.4 Some remarks are needed.

(i) Observe that constraint with the u is in fact the expectation of the law.

(i1) There is a slight difference between Lerch’s transcendent-defined in [?] p. 27 and
with our understanding of Lerch’s transcendent: we don’t have Oth summand.

(iii)) We omitted the full bordered Hessian discussion in proofs of Theorems 1.17 and
1.18 as mere standard procedure.

(iv) Observe, further, that for hybrid Zipf-Mandelbrot law (1.68) Shannon entropy (1.64)
can be bounded from above (see [10]):

oo

S=—= fulk,qss)n fy(k,q,s) < — 2 fu(k,q.5)Ingy, (1.69)
k=1 k=1

where (g : k € N) is any sequence of positive numbers such that Y, ¢; = 1.
k=1





