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1. Introduction

This work contains a compilation of a portion of the research that has been done in the
areas of extension theory, dimension theory, and connections between these two and shape
theory [44]. The main emphasis will be on the former two, but we shall include the third
because of the way it has been intertwined with the others.

When we found it possible, we made steps to improve the efficiency and clarity of
what had been published previously in the literature relative to these subjects. So the reader
might even find some new results in the following even though it was not the authors’ intent
to produce a research article. This writing is not meant to be a historical presentation, but
to set the tone, we have provided, in the ensuing paragraphs, at least a rudimentary scan of
the events leading to our survey.

Dimension theory began in the early part of the 20th century when Henri Poincaré ob-
served in the course of a discussion of space of 3-dimensions, that nobody could explain
what this notion meant (see p. 3 of [31]). One assumes that he wanted a topological defi-
nition of dimension, which, of course, did not exist at that time. Poincaré had some good
ideas of how to define dimension, but he died before having the opportunity to put them
into play. The fundamental problem was to find a way to assign a topologically invariant
non negative integral value n to a space that would represent its “dimensional thickness.”

It could have been the influence of set theory as advanced by Cantor which really set
out this line of thinking. By his approach, one could not distinguish R from R 2 as sets.
Moreover, in those times, if one spoke of the notion of an n-dimensional object it was
simply thought to be something requiring n continuous parameters for its expression. This
was naive; already the concept of a space-filling curve as described by Peano was in the
air. Putting it another way, since it was possible to fill a disk in the plane, or analogously, a
ball in space, with a continuous 1-parameter curve, then how could such a precept be used
to quantify n-dimensional space?

By the early 1920’s (to find references that are more historical, one might consult [25],
[26], [24] or [77]), Poincaré’s call for a theory of dimension had been answered. Work
of L. Brouwer, which gave an early start but seems to have been overlooked in any case,
was in a short time superseded by that of Menger and Urysohn who did their research
independently of each other. It is their theory of dimension which forms the basis for the
one we use today. When we later discuss the various approaches to defining dimension,
one will be surprised at the several different, but equivalent (and useful) formulations of
these definitions which have arisen over the years.

In the late 1920’s and early 1930’s, P. S. Alexandroff introduced a new approach to
dimension. At first it was one based on the group Z of integers and was referred to as
homological dimension theory. Nowadays we recognize that such a theory can be defined
for any abelian group G via Čech cohomology, and this type of dimension is called coho-
mological dimension modulo G. Thus cohomological dimension theory is really a whole
spectrum of dimension theories, one for each algebraically distinct abelian group.
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2 EXTENSION, DIMENSION AND SHAPE

Among the collection of definitions, both for dimension and for cohomological dimen-
sion, it turned out that an approach based on extension of an arbitrary map from a closed
subset of a space–with range in a certain type of complex–to a map of the entire space to
that complex, could be used to define all the above-mentioned types of dimension. This
was recognized and used prominently in the early 1980’s in work of J. Walsh [103], where
he published a proof of the important Edwards-Walsh cell-like resolution theorem. There
the comparison was between dimension and cohomological dimension modulo Z. But
soon others were to see that the entire universe of dimension theories should be viewed in
one consolidated way, and a new subject arose.

This new area, called extension theory, (originated by A. N. Dranishnikov, [17]) serves
as an umbrella over all the known dimension theories and therefore allows a certain effi-
ciency which was not known previously. It covers more ground than the others do, and we
shall see that it has an application even in conjunction with shape theory.

Our first priority will be to review and explain the classical definitions and facts from
dimension and to give at least some introduction to the notion of cohomological dimension.
Then we will introduce the concept of extension theory. We shall give in detail some proofs
of basic theorems in that area.

In a study such as ours, one must always be concerned with which class of topological
spaces is most suitable for the development of a coherent and broadly based theory. Al-
though we will try to make definitions that apply to topological spaces in general, it will not
be feasible to develop a theory that covers such a broad range of possibilities. Hence many
times we will restrict to classes such as paracompact spaces, stratifiable spaces (a gen-
eralization of metrizable spaces), metrizable spaces, compact Hausdorff spaces, or even
compact metrizable spaces. Structures such as CW-complexes and triangulated polyhedra
will play a prominent role in this theory. We shall also place much emphasis on the preser-
vation of dimension-theoretic or extension-theoretic properties in the limits of inverse se-
quences and systems, direct sequences and systems, and generalized inverse sequences
called semi-sequences [34], [36]. Whether a dimension-theoretic or extension-theoretic
property survives in all subspaces (strong inheritance) or only in all closed subspaces (weak
inheritance) will be treated where known.

Throughout this presentation, map will mean continuous function.

2. Primitive Dimension Structure

Definition 2.1. Let C be a class of spaces that includes /0. A primitive dimension struc-
ture for C is a subset D ⊂ C ×Z≥−1 such that,

(i) (X ,−1) ∈ D if and only if X = /0, and

(ii) if X ∈ C ,m ∈ Z≥−1, and (X ,m) ∈ D , then (X ,m+1) ∈ D .

Definition 2.2. Let C be a class of spaces and D a primitive dimension structure for C .
We define the induced dimension function DD : C → Z≥−1 ∪{∞} as follows:
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2. PRIMITIVE DIMENSION STRUCTURE 3

(i) If m ∈ Z≥−1, (X ,m) ∈ D , and m is the first element of Z≥−1 with (X ,m) ∈ D , then
DD(X) = m;

(ii) DD(X) = ∞ otherwise.

We often write DD(X) ≤ m when DD(X) = n and n ≤ m, even in case m = ∞.

Lemma 2.3. If C is a class of spaces and D is a primitive dimension structure for C ,
then for all X ∈ C ,DD(X) = −1 if and only if X = /0.

Our first encounter with a primitive dimension structure will yield both small and large
inductive dimension for the class of topological spaces.

Definition 2.4. Let (A,B) be a disjoint pair of subsets of a space X . A closed subset S of
X is called a separator (sometimes partition) of (A,B) if X \ S can be written as U ∪V
where U,V are open in X ,A ⊂U,B ⊂V , and U ∩V = /0.

Clearly a separator of (A,B) is also a separator of (B,A).

Definition 2.5. Let F be a collection of disjoint pairs of closed subsets of a space X .
Then F is called an essential family in X if for each collection G = {GF |F ∈ F} where
for each F ∈ F , GF is a separator of F, it is true that

⋂{GF |F ∈ F} 	= /0.

For (D1)–(D6), let C be the class of topological spaces.

(D1) Small inductive dimension, ind: Define D−1 = {( /0,−1)}. Suppose that m ∈ Z≥0

and we have defined Dn for all X ∈ C and n < m. Then we put (X ,m) ∈ Dm if X 	= /0 and
for each closed subset A ⊂ X and x ∈ X \A, there is a separator S of ({x},A) such that
(S,m−1)∈ Dm−1. Let D =

⋃{Dm |m ∈ Z≥−1}. Then DD = ind.

(D2) Large inductive dimension, Ind: Large inductive dimension Ind can be obtained
in a similar way. Let D−1 = {( /0,−1)}. Suppose that m ∈ Z≥0 and we have defined Dn for
all X ∈ C and n < m. Then we put (X ,m) ∈ Dm if X 	= /0 and for each disjoint pair (A,B)
of closed subsets of X , there is a separator S of (A,B) such that (S,m− 1) ∈ Dm−1. Let
D =

⋃{Dm |m ∈ Z≥−1}. Then DD = Ind.

(D3) Separator dimension, sep-dim: Consult Definition 4.4 of [73] for the ensuing idea.
Let D−1 = {( /0,−1)}. Suppose X ∈ C and m ∈ Z≥0. Then we put (X ,m) ∈ Dm if X 	= /0
and X has an essential family of cardinality ≤ m. Let D =

⋃{Dm |m ∈ Z≥−1}. Then
DD=sep-dim.

Definition 2.6. A space X is called weakly infinite-dimensional provided sep-dim(X)=
∞ and X does not have an infinite essential family. We call X strongly infinite-dimensional
if sep-dim(X) = ∞ and X has an infinite essential family.

(D4) Cohomological dimension, dimG: Let G be an Abelian group. We will define
the G-cohomological dimension of a space X , dimG X , as follows. Let D−1 = {( /0,−1)},
suppose that X ∈ C , X 	= /0, and m ∈ Z≥0. Then we put (X ,m) ∈ Dm if there exists n ∈ N

such that Ȟn(X ,A;G) = 0 for all closed subsets A of X and m is the first element of Z≥0
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4 EXTENSION, DIMENSION AND SHAPE

such that Ȟm+1(X ,A;G) = 0 for all closed subsets A of X . Put D =
⋃{Dm |m ∈ Z≥−1}.

Then DD = dimG.

(D5) Covering dimension, dim: Covering dimension dim is managed as follows. Put
D−1 = {( /0,−1)}. Suppose that m ∈ Z≥0,X ∈ C , and X 	= /0. Then (X ,m) ∈ Dm if each
open cover of X has an open refinement of order ≤ m+1 (i.e., each element of X lies in at
most m+1 elements of the cover). Put D =

⋃{Dm |m ∈ Z≥−1}. Then DD = dim.

Before providing the next notion, we need a definition.

Definition 2.7. Let X and K be spaces. Then we write XτK and say that X is an absolute
co-extensor for K if for each closed subset A of X and each map f : A → K, there exists a
map of X to K that extends f . It is also said in this case that K is an absolute extensor for
X . Indeed, if C is a class of spaces and for each X ∈ C , XτK, then we shall say that K is
an absolute extensor for C , and for this we write K ∈ AE(C ). In case the class C consists
of just one space X , then we often write K ∈ AE(X).

Let us make a remark here concerning the logic in the notion of XτK. In case X 	= /0
and K = /0, then XτK is impossible. When results are stated later, and it is not certain
whether this phenomenon might occur, then we ask the reader to make accommodations
for this special situation. But in almost all settings, one should assume that K 	= /0.

(D6) Extension sequence dimension, K -dim: Let K = {Ki | i ∈ Z≥0} be an indexed
collection of spaces. We can define K -dim in the following way. Put D−1 = {( /0,−1)}.
Let X ∈C ,X 	= /0, and m∈Z≥0. We put (X ,m)∈Dm if XτKm. Let D =

⋃{Dm |m∈Z≥−1}.
Then DD = K -dim.

Two important examples of this ensue, but this time we must restrict the class of spaces.
Let C be the class of paracompact Hausdorff spaces (paracompacta).

(D6A) If K = {Si | i ∈ Z≥0}, then K -dim = dim.
(D6B) If K = {K(G, i) | i ∈ Z≥0} where G is an abelian group, then K -dim = dimG.
The spaces K(G, i) in (D6B) are called Eilenberg-MacLane complexes, and will be

discussed in Section 7.

3. Rudiments of Dimension Theory

In the early stages of the development of dimension theory, there were two versions of in-
ductive dimension, small (ind) and large (Ind). It has become standard to use large induc-
tive dimension, saving small inductive dimension for the special case (separable metrizable
spaces) where it is most useful. Let us begin with a definition.

Definition 3.1. We say that a space X is infinite-dimensional if IndX = ∞. Otherwise
we say that X is finite-dimensional.

It is difficult to believe that one can go very far with this definition of dimension. Let
us see what we can do initially. We shall use Q and I respectively to designate the rationals
and the irrationals as subspaces of R.
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3. RUDIMENTS OF DIMENSION THEORY 5

Proposition 3.2. The dimension function Ind satisfies the following.

(i) The empty set and only the empty set has Ind = −1.

(ii) If X is a nonempty space with the discrete topology, then IndX = 0.

(iii) If X is a countably infinite metrizable space (of necessity separable), then IndX = 0.

(iv) IndQ = 0 = IndI.

(v) If X is a connected space of cardinality at least 2, then IndX ≥ 1.

(vi) IndR ≥ 1.

(vii) If −1 ≤ m ≤ n ≤ ∞ and IndX ≤ m, then IndX ≤ n.

As a hint to proving Proposition 3.2(3), we would suggest that for a given disjoint pair
A and B of closed subsets of X , apply the Urysohn lemma.

A lemma will help us prove the next theorem. As usual, we shall reserve I for the unit
interval [0,1].

Lemma 3.3. Let D be a nonempty closed subset of I and U a neighborhood of D. Then
there exists a finite, pairwise disjoint collection F of closed intervals of I such that D ⊂
intI

⋃
F ⊂ ⋃

F ⊂U.

Theorem 3.4. IndI = 1.

Proof. By an application of Proposition 3.2(5), IndI ≥ 1. So we need to demonstrate the
reverse inequality.

Let A and B be disjoint closed subsets of I and select a map f : I → I with f (A) ⊂ {0}
and f (B) ⊂ {1}. (Note that we are allowing for the possibility that A or B is empty.) Let
D = f−1({ 1

2}); surely D is a separator of (A,B) in I.
If D = /0, then define S = D; we see from Proposition 3.2(1) that IndS ≤ 0, and of

course that S is a separator of (A,B) in I.
Otherwise choose a neighborhoodU of the closed subset D of I such that (A∪B)∩U =

/0, and select a collection F as in Lemma 3.3. Clearly
⋃

F is a separator of (A,B) in I.
For each J ∈ F , let xJ ∈ J, and put S = {xJ |J ∈ F}. Then S is a finite, nonempty subset
of I. By Proposition 3.2(2), IndS = 0. To complete our proof, it is sufficient to show that S
is a separator of (A,B) in I.

If not, then there exist a ∈ A and b ∈ B such that [a,b]∩ S = /0. There is J ∈ F such
that [a,b]∩J 	= /0. But neither a nor b is in J, so J ⊂ [a,b]. This implies that x J ∈ [a,b] and
hence [a,b]∩S 	= /0, a contradiction. �

The dimension of a topological space is a quantity which, intuitively, measures the
“thickness” of that space in comparison with others. This accepted, one would think that it
would automatically be the case that if X ⊂Y , then IndX ≤ IndY . Unfortunately, this is not
true in general; it does not even work for the class of paracompacta. We shall remark later
about some other phenomena of dimension theory which are somewhat disagreeable. This
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6 EXTENSION, DIMENSION AND SHAPE

is the price one has to pay in order to get a theory which conforms in the most important
cases to the original purposes of the subject.

In the next section we shall begin to state some of the fundamental theorems of dimen-
sion theory. From them it will be possible to prove some significant theorems and perhaps
to answer some questions which may have been raised because of what we have done so
far.

4. Subspace and Sum Theorems

There are two important versions of the “Subspace Theorem” for Ind. Let us state the first
and easiest one, the “Weak Subspace Theorem.”

Proposition 4.1. (Weak Subspace Theorem) Let A be a closed subspace of a space X.
Then IndA ≤ IndX.

To get at the stronger one we need the concept of a strongly hereditarily normal space.
This can be found on page 128 of [26].

Theorem 4.2. (STRONG SUBSPACE THEOREM) Let A be a subspace of a strongly hered-
itarily normal space X. Then IndA ≤ IndX.

If one applies Theorem 2.1.4. of [26], which states that hereditarily paracompact spaces
are strongly hereditarily normal, then we see that every metrizable space is strongly hered-
itarily normal. We get the following corollary.

Corollary 4.3. The Strong Subspace Theorem holds true for metrizable spaces.

Proposition 4.4. For all n ≥ 1, IndRn ≥ 1.

We know from 3.2(6) that IndR≥ 1, but we are not yet able to conclude that IndR≤ 1,
and hence that IndR = 1. Let us state a theorem which will provide the help needed to
deduce this.

Theorem 4.5. (Sum Theorem) If a hereditarily paracompact space X can be written as
the countable union

⋃{Ai | i ∈ N} of closed subspaces Ai where IndAi ≤ n for each i, then
IndX ≤ n.

By the way, this is not the strongest version of the Sum Theorem. One may find ([26],
Theorem 2.3.11.) a stronger version of it.

Theorem 4.6. (Stronger Sum Theorem) Let {Fγ |γ ∈ Γ} be a σ -locally finite closed
cover of a strongly hereditarily normal space X such that IndFγ ≤ n for every γ ∈ Γ. Then
IndX ≤ n.

We get the following corollary.

ele
men

t.h
r



4. SUBSPACE AND SUM THEOREMS 7

Corollary 4.7. Let {Fγ |γ ∈ Γ} be a σ -locally finite closed cover of a hereditarily para-
compact space X such that IndFγ ≤ n for every γ ∈ Γ. Then IndX ≤ n.

Proposition 4.8. IndR = 1.

It turns out that when working with separable metrizable spaces it is often convenient
to use small inductive dimension. Here is an important theorem in connection with three
types of dimension.

Theorem 4.9. Let X be a metrizable space; then

(i) IndX = sep-dimX, and

(ii) indX = IndX if X is separable.

It is false in general that ind and Ind agree for arbitrary metrizable spaces. There is a
famous example due to Prabir Roy [85] which proves that these two dimension functions
part company in the class of metrizable spaces. There is some discussion of this topic in
[26].

Proposition 4.10. If X is a subset of R which is nonempty and contains no interval, then
IndX = 0.

This might be misleading when one considers totally disconnected spaces.

Proposition 4.11. If X is a separable, metrizable, locally compact and totally discon-
nected space, then IndX ≤ 0.

One should note that there is more than one definition of total disconnectedness. We
may agree here to use the one that says that each component of X is singleton. Now it
turns out that there are totally disconnected spaces of every dimension and even infinite-
dimensional ones. This is another one of those anomalies of dimension theory, one that we
have to live with in order to preserve a good theory.

We stated in the beginning that Poincaré wanted a theory of dimension in which “space”
would be 3-dimensional, and, of course, all obviously n-dimensional spaces (e.g., R n)
would have dimension n. Here is some warm-up.

Proposition 4.12. The following are true.

(i) If X ⊂ R2 is a rectangular disk, then Ind(bd
R

2 X) = 1.

(ii) IndR2 ≤ 2.

(iii) For all n ∈ N, IndRn ≤ n.

It is a different story to prove that IndRn = n. This is frequently done using some tool
from algebraic topology such as higher homotopy groups or homology groups. But there
are other techniques that use only combinatorial methods such as that in [73] where it is
proved that In ∼= Im if and only if n = m. It is shown there that sep-dimI n = n. With this
and the Strong Subspace Theorem, one may conclude:
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8 EXTENSION, DIMENSION AND SHAPE

Theorem 4.13. For all n ∈ N, IndRn = n.

We finish this section with some statements connecting Euclidean spaces and dimen-
sion theory.

Theorem 4.14. Let X ⊂ Rn; then IndX = n if and only if the interior of X is nonempty.

Theorem 4.15. If X ⊂ Rn and X separates Rn, then IndX ≥ n−1.

Theorem 4.16. (Theorem on Invariance of Domain) If f : Rn → Rn is an embedding,
then f (Rn) is an open subset of Rn.

Proposition 4.17. If f : Rn → Rn is an injective map, then f is an embedding onto an
open set.

5. More Fundamentals

One theorem that is peculiar to dimension theory is the next one. We do not know of any
analogous theorem in other theories (of extension or dimension).

Theorem 5.1. (Decomposition Theorem) Let X be a metrizable space and −1 ≤ n < ∞.
Then IndX ≤ n if and only if X can be written as

⋃{Xi |0 ≤ i ≤ n}, where IndXi ≤ 0 for
each 0 ≤ i ≤ n.

Theorem 5.2. (Menger-Urysohn Addition Theorem) Let A and B be finite-dimensional
subsets of a metrizable space X. Then Ind(A∪B) ≤ IndA+ IndB+1.

Why do we have to add 1 in the preceding statement? Just consider that R = Q∪I

while noting that IndQ = IndI = 0. In case the dimension of one of the summands in
Theorem 5.2 is ∞, then the result would be rephrased to say that Ind(A∪B) = ∞.

When n ≥ 1, one can give an explicit decomposition of R n into n + 1 0-dimensional
subspaces in the following manner. For 0 ≤ k ≤ n, put Qn

k equal the set of points in Rn

having exactly k rational coordinates. It can be proved that IndQ n
k = 0. Now note that

Rn =
⋃{Qn

k |0 ≤ k ≤ n}.

Theorem 5.3. (Product Theorem) Let X and Y be metrizable spaces. Then Ind(X×Y )≤
IndX + IndY .

You may wonder why less than or equal; why not equality? There are examples to
show that a “deficiency” may occur in the product. Namely, there is even a metrizable com-
pactum X with IndX = 2, but Ind(X ×X) = 3. This may be considered another anomaly
of dimension theory.
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6. COVERING DIMENSION, OTHER APPROACHES 9

Theorem 5.4. (Completion Theorem) If X is a metrizable space, then there exist a com-
pletely metrizable space Y with IndY = IndX and an embedding of X into Y .

Theorem 5.5. (Compactification Theorem) For every separable metrizable space X,
there exist a metrizable compactum Y with IndY = IndX and an embedding of X into
Y .

Definition 5.6. Let F be a class of spaces. A space X is called universal for F if X is
in F and for every Y ∈ F , there exists an embedding of Y into X .

Theorem 5.7. (Theorem on Universal Metrizable Compacta) Let −1 ≤ n ≤ ∞. Put Fn

equal the class of compact metrizable spaces of Ind≤ n. Then there exists a space X which
is universal for Fn.

6. Covering Dimension, Other Approaches

Checking the literature (e.g., [26]), one may discover that our definition of covering dimen-
sion is at odds with what one typically sees. The difference is that, standardly, the open
covers are required to be finite. In the class of spaces of most interest to us, metrizable
spaces (or even compact Hausdorff spaces), the two definitions are equivalent. Let us next
quote Theorem 4.1.3 of [26], one of the most important theorems about the equivalence of
distinct dimension notions.

Theorem 6.1. For each metrizable space X, IndX = dimX.

Henceforward, when we speak of the “dimension” of a space we will mean its covering
dimension dim unless otherwise specified. We noted in Section 2 that if K = {S i | i ∈
Z≥0}, then K -dimX = dimX for all paracompacta X . Hence we have:

Theorem 6.2. Let X be a paracompact space and n a nonnegative integer. Then dimX ≤
n if and only if XτSn.

If one takes the point of view that the statement about extension of maps in Theorem
6.2 is the basis of the definition of dimension, then a whole new perspective comes into
view. We shall see much more of this later. Let us now state some other items of interest
in dimension theory, mainly for the class of metrizable spaces.

Theorem 6.3. Let X be a metrizable space, and Y be a subspace of X with dimY ≤ 0.
Then for every disjoint pair (A,B) of closed subsets of X, there exists a separator C of
(A,B) such that C∩Y = /0.

Proposition 6.4. Let X be a metrizable space, n be a nonnegative integer, and Y be a
subspace of X with dimY ≤ n. Then for every disjoint pair (A,B) of closed subsets of X,
there exists a separator C of (A,B) such that dim(C∩Y ) ≤ n−1.
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10 EXTENSION, DIMENSION AND SHAPE

Proposition 6.5. Let X be a metrizable space, n be a nonnegative integer, and suppose
that dimX ≤ n. Then for each collection {(Ai,Bi) |1≤ i ≤ n+1} of disjoint pairs of closed
subsets of X, there exists a collection {Ci |1 ≤ i ≤ n + 1} of respective separators of the
pairs (Ai,Bi) such that

⋂{Ci |1 ≤ i ≤ n+1}= /0.

The Hilbert cube, I∞, is the countably infinite product of unit intervals I. That is,
I∞ = ∏{Ii | i ∈ N} where Ii = I for each i. The Hilbert cube has pairs (Ai,Bi) of opposite
faces. These are defined by, Ai = {(x j) ∈ I∞ |xi = 0} and Bi = {(x j) ∈ I∞ |xi = 1}.

Theorem 6.6. The collection of opposite face pairs {(Ai,Bi) | i ∈ N} in the Hilbert cube
is an essential family. Therefore the Hilbert cube is strongly infinite-dimensional.

In I∞, for each i ∈ N, let Xi = {(x j) |x j = 0 for j > i}. Put X∞ =
⋃{Xi | i ∈ N}.

Proposition 6.7. X∞ is weakly infinite-dimensional.

It is an interesting fact that there exist strongly infinite-dimensional metrizable com-
pacta X having the property that if Y is a nonempty subspace of X , then either dimY = 0
or Y is strongly infinite-dimensional. It is even more surprising that one may obtain such
X which is totally disconnected. We shall not pursue these topics here.

7. Cohomological Dimension

The definition of dimG for any abelian group G was given in Section 2 making use of
Čech cohomology. What is important for our needs is that for each topological space X ,
closed subspace A of X , abelian group G, and nonnegative integer n, there is a well-defined
reduced Čech cohomology group, denoted ˜̌Hn(X ,A;G). This group is always abelian. The
theory agrees with singular cohomology when (X ,A) is a polyhedral pair; we will discuss
polyhedra in Section 9.

The case in which G = Z is special. Let us state Alexandroff’s Theorem comparing
dim and dimZ.

Theorem 7.1. Let X be a compact Hausdorff space with dimX < ∞. Then dimZ X =
dimX.

As surprising as this theorem may seem, once it is accepted, the next result is even
more surprising. It is due to A. Dranishnikov ([15]).

Theorem 7.2. There exists a metrizable compactum X such that dimX =∞ and dimZ X
< ∞.

As mentioned in Section 2, dimG can be defined as K -dim when K = {K(G, i) | i ∈
N}. What are the Eilenberg-MacLane CW-complexes K(G, i)? We shall assume that the
reader is familiar with the idea of a CW-complex. Reference [55] can be consulted or one
may find such information in [98].

ele
men

t.h
r




