
Chapter4
Converse inequalities in
compact Hausdorff space

In this chapter we will prove difference type converses of the Jensen and Edmundson-
Lah-Ribarič operator inequality for a unital field of positive linear mappings between C∗-
algebras of operators in compact Hausdorff space, as well as further refinements and im-
provements thereto. Obtained general result will be applied to quasi-arithmetic operator
means and to potential operator means with the aim of obtaining a better estimate of the
difference between these means. Likewise, the mutual bounds for the Jensen operator in-
equality and the Lah-Ribarič operator inequality for the classes of bounded real-valued
functions and Lipschitzian functions will be studied. The connection with the classical
convexity will also be discussed. In the last section we give several mutual bounds for
the operator version of the Edmundson-Lah-Ribarič inequality which hold for the class of
n-convex functions. By virtue of the established estimates, we then derive several mutual
bounds for the Jensen operator inequality which are also related to n-convex functions. As
an application, we obtain mutual bounds for the differences of quasi-arithmetic and power
operator means based on n-convexity.
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106 4 CONVERSE INEQUALITIES IN COMPACT HAUSDORFF SPACE

4.1 Introduction

Let T be a locally compact Hausdorff space and let A be a C∗-algebra. We say that a
field (xt)t∈T of elements in A is continuous if the function t → xt is norm continuous on
T . Additionally, if T is equipped with a Radon measure μ and the function t → ||xt || is
integrable, then, the so-called Bochner integral

∫
T xtdμ(t) can be formed. More precisely,

the Bochner integral is the unique element in A such that the relation

ϕ
(∫

T
xtdμ(t)

)
=
∫

T
ϕ (xt)dμ(t)

holds for every linear functional ϕ in the norm dual A ∗ (see [55]).
Assume furthermore that there is a field (φt )t∈T of positive linear mappings φt : A →B

from A to another C∗-algebra B. Such field is said to be continuous if the function t →
φt(x) is continuous for every x ∈ A . If the C∗-algebras are unital and the field t → φt (1)
is integrable with integral 1, we say that (φt)t∈T is unital. We assume that such field is
continuous.

Let x and y be operators (acting) on an infinite dimensional Hilbert space H . The
ordering is defined by setting x≤ y if y− x is a positive semi-definite operator.

A continuous function f : I→ R is operator convex if

f (λx+(1−λ )y)≤ λ f (x)+ (1−λ ) f (y)

holds for each λ ∈ [0,1] and every pair of self-adjoint operators x and y (acting) on an infi-
nite dimensional Hilbert space H with spectra in I. When the inequality sign is reversed,
function f is operator concave.

If f : I → R is operator convex function, where I is a real interval of any type, and
(φt )t∈T is a unital field, then the Jensen operator inequality (see Hansen et.al., [56]) asserts
that

f

(∫
T

φt(xt)dμ(t)
)
≤
∫

T
φt ( f (xt))dμ(t) (4.1)

holds for every bounded continuous field (xt)t∈T of self-adjoint elements in A with spectra
contained in I. If f : I→R is operator concave function, then the sign of inequality in (4.1)
is reversed.

In the same paper, Hansen et.al. obtained the following inequality which holds for an
usual convex function f : [m,M]→ R (see [56], proof of Theorem 2):∫

T
φt( f (xt ))dμ(t)≤ α f

∫
T

φt(xt)dμ(t)+ β f1. (4.2)

In this matter, the usual notation is used:

α f =
f (M)− f (m)

M−m
and β f =

M f (m)−mf (M)
M−m

.
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4.2 CONVERSES OF THE OPERATOR INEQUALITY 107

Inequality (4.2) is referred to as the Edmundson-Lah-Ribarič operator inequality. Observe
that the operator inequality (4.2) is established by applying the functional calculus to the
well-known inequality

f (t)≤ α f t + βt, (4.3)

which holds for every convex function on the interval [m,M]. Recall that l(t) = α f t +βt is
the linear function limiting convex function f (t) on interval [m,M] from the above.

On the other hand, Mićić, Pečarić and Perić in [99] obtained the following improvement
of the Edmundson-Lah-Ribarič operator inequality∫

T
φt( f (xt ))dμ(t)≤ α f

∫
T

φt(xt)dμ(t)+ β f1− δ f x, (4.4)

where

x =
1
2
1− 1

M−m

∫
T

φt

(∣∣xt − m+M
2

1
∣∣)dμ(t) (4.5)

and

δ f = f (m)+ f (M)−2 f

(
m+M

2

)
. (4.6)

Since f : [m,M]→ R is convex function, it follows that x≥ 0 and δ f ≥ 0.
The techniques that will be used in the proofs are mainly based on the classical real and

functional calculus, especially on the well-known monotonicity principle for self-adjoint
elements of a C∗-algebra A : If x ∈A with a spectra Sp(x), then

f (t)≥ g(t), t ∈ Sp(x) =⇒ f (x) ≥ g(x), (4.7)

where f and g are real continuous functions (for more details see [49]). Moreover, all the
results that follow include the Bochner integral, defined in this Introduction. If nothing else
is explicitly stated, (xt)t∈T is a bounded continuous field of self-adjoint elements in unital
C∗-algebra whose spectra belongs to a domain of the corresponding function and (φt)t∈T

is a unital field of positive linear mappings between the corresponding unital C∗-algebras.
The following results refer to functions that are convex in the classical sense. Although

regarding different inequalities, it appears that these two series of converses are closely
connected.

4.2 Converses of the Jensen and Edmundson-Lah-
-Ribarič operator inequality

First we give a series of converses for the Jensen operator inequality obtained in [65]. It
should be noticed here that the following theorem in the classical real case was proved
by Dragomir in the recent paper [37], and generalization of the same inequality for lin-
ear functionals was proved by Jakšić and Pečarić in [68]. In fact, such series of scalar
inequalities will be exploited in establishing the corresponding operator form.
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108 4 CONVERSE INEQUALITIES IN COMPACT HAUSDORFF SPACE

Theorem 4.1 Let f : I→ R be a continuous convex function, and let m,M ∈ R, m < M,
be such that interval [m,M] belongs to the interior of interval I. Further, suppose A and B
are unitalC∗-algebras, and (φt )t∈T is a unital field of positive linear mappings φt : A →B
defined on a locally compact Hausdorff space T with a bounded Radon measure μ . Then
the series of inequalities∫

T
φt( f (xt ))dμ(t)− f

(∫
T

φt(xt)dμ(t)
)

≤ f ′−(M)− f ′+(m)
M−m

(
M1−

∫
T

φt(xt)dμ(t)
)(∫

T
φt(xt)dμ(t)−m1

)
≤ 1

4
(M−m)( f ′−(M)− f ′+(m))1 (4.8)

holds for every bounded continuous field (xt)t∈T of self-adjoint elements in A with spectra
contained in [m,M]. If f is concave on I, then the signs of inequalities in (4.8) are reversed.

Proof. Taking into account the operator version of the Lah-Ribarič inequality (4.2), it
follows that ∫

T
φt( f (xt ))dμ(t)− f

(∫
T

φt(xt)dμ(t)
)

≤ α f

∫
T

φt(xt)dμ(t)+ β f 1− f

(∫
T

φt(xt)dμ(t)
)

. (4.9)

On the other hand, regarding convexity of f , we have the so-called gradient inequality,

f (t)− f (M)≥ f ′−(M)(t−M),

which holds for every t ∈ [m,M], that is,

(t−m) f (t)− (t−m) f (M)≥ f ′−(M)(t−M)(t−m), t ∈ [m,M],

after multiplying with t−m. In the same way, it follows that

(M− t) f (t)− (M− t) f (m)≥ f ′+(m)(M− t)(t−m), t ∈ [m,M].

Now, adding the above two inequalities, and then, dividing by m−M, we have

α f t + β f − f (t)≤ f ′−(M)− f ′+(m)
M−m

(M− t)(t−m). (4.10)

Moreover, taking into account the arithmetic-geometric mean inequality, the following
series of inequalities holds for all t ∈ [m,M] (see also [37]):

α f t + β f − f (t) ≤ f ′−(M)− f ′+(m)
M−m

(M− t)(t−m)

≤ 1
4
(M−m)( f ′−(M)− f ′+(m)). (4.11)
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4.2 CONVERSES OF THE OPERATOR INEQUALITY 109

Now, since m1 ≤ xt ≤M1 for every t ∈ T , it follows that mφt(1)≤ φt(xt)≤Mφt(1), that
is, m1≤ ∫T φt(xt)dμ(t)≤M1. Hence, applying the functional calculus to the above series
of inequalities, that is, setting

∫
T φt(xt)dμ(t) instead of t, we have

α f

∫
T

φt(xt)dμ(t)+ β f 1− f

(∫
T

φt(xt)dμ(t)
)

≤ f ′−(M)− f ′+(m)
M−m

(
M1−

∫
T

φt(xt)dμ(t)
)(∫

T
φt(xt)dμ(t)−m1

)
≤ 1

4
(M−m)( f ′−(M)− f ′+(m))1. (4.12)

Finally, comparing (4.9) and (4.12), we obtain (4.8), as claimed. �

Remark 4.1 Observe that in the statement of Theorem 4.1 the interval [m,M] belongs to
the interior of the interval I. This condition assures finiteness of the one-sided derivatives
in (4.8). Without this assumption these derivatives might be infinite.

Remark 4.2 It should be noticed here that the first expression in the series of inequalities
(4.8), that is, the element

∫
T φt( f (xt))dμ(t)− f (

∫
T φt(xt)dμ(t)) is not positive in general.

This element is positive if f is in addition operator convex function, due to the Jensen
operator inequality (4.1).

The following result was also proved in [65] and it represents converses of the Ed-
mundson-Lah-Ribarič operator inequality (4.2):

Theorem 4.2 Suppose f : I→R is a continuous convex function, and m,M ∈R, m < M,
are such that interval [m,M] belongs to the interior of interval I. Further, let (φt )t∈T be
a unital field of positive linear mappings φt : A → B, where A and B are unital C∗-
algebras, defined on a locally compact Hausdorff space T with a bounded Radon measure
μ . Then the series of inequalities

0 ≤ α f

∫
T

φt(xt)dμ(t)+ β f 1−
∫
T

φt( f (xt))dμ(t)

≤ f ′−(M)− f ′+(m)
M−m

∫
T

φt ([M1− xt][xt −m1])dμ(t)

≤ f ′−(M)− f ′+(m)
M−m

(
M1−

∫
T

φt(xt)dμ(t)
)(∫

T
φt(xt)dμ(t)−m1

)
≤ 1

4
(M−m)( f ′−(M)− f ′+(m))1 (4.13)

holds for every bounded continuous field (xt)t∈T of self-adjoint elements in A with spectra
contained in [m,M]. If f is concave on I, then the signs of inequalities in (4.13) are
reversed.

Proof. The first inequality in (4.13) holds by virtue of the Edmundson-Lah-Ribarič in-
equality (4.2). Further, starting from the scalar inequality (4.10), it follows that relation

α f xt + β f 1− f (xt)≤ f ′−(M)− f ′+(m)
M−m

(M1− xt)(xt −m1)
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110 4 CONVERSE INEQUALITIES IN COMPACT HAUSDORFF SPACE

holds for every t ∈ T . Now, applying the positive linear mappings φt to the above relation,
we obtain

α f φt(xt)+ β f φt (1)−φt( f (xt ))≤ f ′−(M)− f ′+(m)
M−m

φt([M1− xt][xt −m1]),

while integrating yields

α f

∫
T

φt(xt)dμ(t)+ β f 1−
∫
T

φt( f (xt ))dμ(t)

≤ f ′−(M)− f ′+(m)
M−m

∫
T

φt ([M1− xt][xt −m1])dμ(t),

so the second inequality in (4.13) holds.
Taking into account Theorem 4.1, it is enough to justify the third inequality sign in

(4.13). To prove our assertion, we note that the function

h(t) = (M− t)(t−m) =−t2 +(M +m)t−Mm, t ∈ [m,M]

is operator concave (see e.g. [49]). Finally, applying the Jensen operator inequality (4.1)
to the above function h, it follows that∫

T
φt ([M1− xt][xt −m1])dμ(t)

≤
(

M1−
∫
T

φt (xt)dμ(t)
)(∫

T
φt(xt)dμ(t)−m1

)
,

and the proof is completed. �

Following results are obtained in [66] and they represent more precise converses of the
Jensen and Edmundson-Lah-Ribarič operator inequality, and they represent also refine-
ments of the inequalities (4.8) and (4.13) respectively. Such improved relations are also
accompanied with a convexity in the classical real sense.

In order to present our basic results, we define

Δ f (t;m,M) =
1

M−m

[
f (M)− f (t)

M− t
− f (t)− f (m)

t−m

]
, (4.14)

where m < M and f : I→ R is a continuous convex function such that the interval [m,M]
belongs to the interior of interval I. Observe that expression (4.14) is actually the second
order divided difference of the function f at points m,t, and M, for every t ∈ (m,M).

Remark 4.3 Observe that the function f is defined on the interval I whose interior con-
tains interval [m,M]. This condition ensures finiteness of one-sided derivatives at points m
and M. Then,

lim
t→m+

Δ f (t;m,M) =
1

M−m

[
f (M)− f (m)

M−m
− f ′+(m)

]
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4.2 CONVERSES OF THE OPERATOR INEQUALITY 111

and

lim
t→M−

Δ f (t;m,M) =
1

M−m

[
f ′−(M)− f (M)− f (m)

M−m

]
,

so Δ f (·;m,M) may be regarded as a continuous function (in parameter t) on the interval
[m,M]. Therefore, if x is a self-adjoint element in C∗-algebra with spectra contained in
[m,M], then the expression Δ f (x;m,M) is also meaningful. Clearly, this assertion holds
due to functional calculus.

Now we give two series of converses for the Jensen operator inequality. One of them
refines series (4.8). The classical real version of the following theorem was proved by
Dragomir in recent paper [38]. In fact, such scalar series of inequalities will be exploited
in establishing the corresponding operator forms.

Theorem 4.3 Let f : I→ R be a continuous convex function, and let m,M ∈ R, m < M,
be such that interval [m,M] belongs to the interior of interval I. Further, suppose A and B
are unitalC∗-algebras, and (φt)t∈T is a unital field of positive linear mappings φt : A →B
defined on a locally compact Hausdorff space T with a bounded Radon measure μ . Then
the series of inequalities∫

T
φt( f (xt ))dμ(t)− f

(∫
T

φt(xt)dμ(t)
)

≤ sup
m<t<M

Δ f (t;m,M)
(

M1−
∫
T

φt(xt)dμ(t)
)(∫

T
φt (xt)dμ(t)−m1

)
≤ f ′−(M)− f ′+(m)

M−m

(
M1−

∫
T

φt (xt)dμ(t)
)(∫

T
φt(xt)dμ(t)−m1

)
≤ 1

4
(M−m)( f ′−(M)− f ′+(m))1 (4.15)

and ∫
T

φt( f (xt ))dμ(t)− f

(∫
T

φt(xt)dμ(t)
)

≤ 1
4
(M−m)2Δ f

(∫
T

φt(xt)dμ(t);m,M

)
≤ 1

4
(M−m)( f ′−(M)− f ′+(m))1 (4.16)

hold for every bounded continuous field (xt)t∈T of self-adjoint elements in A with spectra
contained in [m,M]. If f is concave on I, then the signs of inequalities in (4.15) and (4.16)
are reversed.

Proof. Taking into account the operator version of the Edmundson-Lah-Ribarič inequality
(4.2), it follows that∫

T
φt( f (xt ))dμ(t)− f

(∫
T

φt(xt)dμ(t)
)

≤ α f

∫
T

φt(xt)dμ(t)+ β f1− f

(∫
T

φt(xt)dμ(t)
)

. (4.17)
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112 4 CONVERSE INEQUALITIES IN COMPACT HAUSDORFF SPACE

On the other hand, the scalar inequality

α f t + β f − f (t) =
M− t
M−m

f (m)+
t−m
M−m

f (M)− f (t)

=
(M− t)(t−m)

M−m

[
f (M)− f (t)

M− t
− f (t)− f (m)

t−m

]
= (M− t)(t−m)Δ f (t;m,M)
≤ (M− t)(t−m) sup

m<t<M
Δ f (t;m,M) (4.18)

holds for all t ∈ [m,M]. In addition, since

sup
m<t<M

Δ f (t;m,M) =
1

M−m
sup

m<t<M

[
f (M)− f (t)

M− t
− f (t)− f (m)

t−m

]
≤ 1

M−m

[
sup

m<t<M

f (M)− f (t)
M− t

+ sup
m<t<M

(
− f (t)− f (m)

t−m

)]
=

1
M−m

[
sup

m<t<M

f (M)− f (t)
M− t

− inf
m<t<M

f (t)− f (m)
t−m

]
=

f ′−(M)− f ′+(m)
M−m

, (4.19)

we have the following series of inequalities:

α f t + β f − f (t)≤ (M− t)(t−m) sup
m<t<M

Δ f (t;m,M)

≤ f ′−(M)− f ′+(m)
M−m

(M− t)(t−m)

≤ 1
4
(M−m)( f ′−(M)− f ′+(m)). (4.20)

Clearly, the last inequality sign in (4.20) holds due to the arithmetic-geometric mean in-
equality, that is, (M− t)(t−m)≤ 1

4 (M−m)2.
Now, since m1 ≤ xt ≤M1 for every t ∈ T , it follows that mφt(1) ≤ φt(xt) ≤Mφt (1),

that is, m1 ≤ ∫T φt(xt)dμ(t) ≤ M1. Hence, applying the functional calculus to the above
series of inequalities, that is, putting

∫
T φt(xt)dμ(t) instead of t, we have

α f

∫
T

φt(xt)dμ(t)+ β f1− f

(∫
T

φt(xt)dμ(t)
)

≤ sup
m<t<M

Δ f (t;m,M)
(

M1−
∫
T

φt(xt)dμ(t)
)(∫

T
φt(xt)dμ(t)−m1

)
≤ f ′−(M)− f ′+(m)

M−m

(
M1−

∫
T

φt(xt)dμ(t)
)(∫

T
φt(xt)dμ(t)−m1

)
≤ 1

4
(M−m)( f ′−(M)− f ′+(m))1. (4.21)

Finally, comparing (4.17) and (4.21), we obtain (4.15), as claimed.
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4.2 CONVERSES OF THE OPERATOR INEQUALITY 113

To prove (4.16), we start with the scalar series of inequalities

α f t + β f − f (t)≤ 1
4
(M−m)2Δ f (t;m,M)

≤ 1
4
(M−m)( f ′−(M)− f ′+(m)), t ∈ [m,M], (4.22)

which obviously follows from (4.18), (4.19), and the arithmetic-geometricmean inequality.
Finally, setting

∫
T φt(xt)dμ(t) in (4.22) and utilizing (4.17), we obtain (4.16) and the proof

is completed. �

Remark 4.4 Observe that the series of inequalities in (4.15) refines the series (4.8), since

supm<t<M Δ f (t;m,M) ≤ f ′−(M)− f ′+(m)
M−m . For example, if f (t) = t2 and m < M, then

1 = sup
m<t<M

Δ f (t;m,M) <
f ′−(M)− f ′+(m)

M−m
= 2,

while for f (t) = t3 we have

m+2M = sup
m<t<M

Δ f (t;m,M) <
f ′−(M)− f ′+(m)

M−m
= 3(m+M),

provided that 0 < m < M. However, a convex function needs not to be differentiable. To
see the corresponding example, let m < 0 < M and let f : R→ R be defined by

f (t) =
{

t2, t ≥ 0
−t, t < 0

.

Then,

Δ f (t;m,M) =

{
1− m(m+1)

(M−m)(t−m) , t ≥ 0
M(M+1)

(M−m)(M−t) , t < 0
,

and consequently,

sup
m<t<M

Δ f (t;m,M) =

{
M2−2Mm−m

(M−m)2 , if m <−1
M+1
M−m , if −1≤ m < 0

.

On the other hand,
f ′−(M)− f ′+(m)

M−m
=

2M +1
M−m

,

which implies that supm<t<M Δ f (t;m,M) <
f ′−(M)− f ′+(m)

M−m , since M > 0.

Remark 4.5 It should be noticed here that the first line in the series of inequalities (4.15)
and (4.16), that is, the element

∫
T φt( f (xt ))dμ(t)− f (

∫
T φt (xt)dμ(t)) is not positive in

general. This element is positive if f is in addition operator convex function, due to the
Jensen operator inequality (4.1).
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114 4 CONVERSE INEQUALITIES IN COMPACT HAUSDORFF SPACE

The following result provides several converse series of inequalities for the Edmund-
son-Lah-Ribarič operator inequality (4.2). As we shall see below, one of them improves
the series (4.13).

Theorem 4.4 Suppose f : I→R is a continuous convex function, and m,M ∈R, m < M,
are such that interval [m,M] belongs to the interior of interval I. Further, let (φt)t∈T be
a unital field of positive linear mappings φt : A → B, where A and B are unital C∗-
algebras, defined on a locally compact Hausdorff space T with a bounded Radon measure
μ . Then the series of inequalities

0≤α f

∫
T

φt(xt)dμ(t)+ β f 1−
∫
T

φt ( f (xt))dμ(t)

≤ sup
m<t<M

Δ f (t;m,M)
∫

T
φt ([M1− xt][xt −m1])dμ(t)

≤ f ′−(M)− f ′+(m)
M−m

∫
T

φt ([M1− xt][xt −m1])dμ(t)

≤ f ′−(M)− f ′+(m)
M−m

(
M1−

∫
T

φt(xt)dμ(t)
)(∫

T
φt(xt)dμ(t)−m1

)
≤1

4
(M−m)( f ′−(M)− f ′+(m))1, (4.23)

0≤α f

∫
T

φt(xt)dμ(t)+ β f 1−
∫
T

φt ( f (xt))dμ(t)

≤ sup
m<t<M

Δ f (t;m,M)
∫

T
φt ([M1− xt][xt −m1])dμ(t)

≤ sup
m<t<M

Δ f (t;m,M)
(

M1−
∫
T

φt(xt)dμ(t)
)(∫

T
φt(xt)dμ(t)−m1

)
≤ f ′−(M)− f ′+(m)

M−m

(
M1−

∫
T

φt(xt)dμ(t)
)(∫

T
φt(xt)dμ(t)−m1

)
≤1

4
(M−m)( f ′−(M)− f ′+(m))1, (4.24)

and

0≤α f

∫
T

φt(xt)dμ(t)+ β f 1−
∫
T

φt( f (xt ))dμ(t)

≤1
4
(M−m)2

∫
T

φt
(
Δ f (xt ;m,M)

)
dμ(t)

≤1
4
(M−m)( f ′−(M)− f ′+(m))1 (4.25)

hold for every bounded continuous field (xt)t∈T of self-adjoint elements in A with spectra
contained in [m,M]. Moreover, if f is concave on I, then the signs of inequalities in (4.23),
(4.24), and (4.25) are reversed.
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