Chapter

Class of $(h, g ; m)$-convex functions and certain types of inequalities

A convex function is one whose epigraph is a convex set, or, as in the basic definition:
A function $f: I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ is said to be convex function if

$$
\begin{equation*}
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y) \tag{3.1}
\end{equation*}
$$

holds for an points x and y in I and all $\lambda \in[0,1]$.
It is called strictly convex if the inequality (3.1) holds strictly whenever x and y are distinct points and $\lambda \in(0,1)$. If $-f$ is convex (respectively, strictly convex) then we say that f is concave (respectively, strictly concave). If f is both convex and concave, then f is said to be affine.

Motivated by a large number of different classes of convexity, we present a new convexity that unifies a certain range of them. Starting from the above convex function up to a recent convexity [27]:

A function $f: I \subset \mathbb{R} \rightarrow \mathbb{R}$ is called exponentially (s, m)-convex in the second sense if the following inequality holds

$$
\begin{equation*}
f(\lambda x+m(1-\lambda) y) \leq \frac{\lambda^{s}}{e^{\alpha x}} f(x)+\frac{(1-\lambda)^{s}}{e^{\alpha y}} m f(y) \tag{3.2}
\end{equation*}
$$

for all $x, y \in I$ and all $\lambda \in[0,1]$, where $\alpha \in \mathbb{R}, s, m \in(0,1]$.
we noticed that the whole range in-between could be covered if we use on the right-hand side functions h and g in a form

$$
f(\lambda x+m(1-\lambda) y) \leq h(\lambda) f(x) g(x)+m h(1-\lambda) f(y) g(y) .
$$

We named this convexity an $(h, g ; m)$-convexity.
Here are several more varieties of convexity that will be generalized with this:

- A non-negative function $f: I \subset \mathbb{R} \rightarrow \mathbb{R}$ is called P-function if the inequality holds

$$
f(\lambda x+(1-\lambda) y) \leq f(x)+f(y)
$$

for all $x, y \in I$ and all $\lambda \in[0,1]$.

- A function $f:[0, \infty) \rightarrow[0, \infty)$ is called s-convex in the second sense if the inequality holds

$$
f(\lambda x+(1-\lambda) y) \leq \lambda^{s} f(x)+(1-\lambda)^{s} f(y)
$$

for all $x, y \in[0, \infty)$ and all $\lambda \in[0,1]$, where $s \in(0,1]$.

- A non-negative function $f: I \subset \mathbb{R} \rightarrow \mathbb{R}$ is called Godunova-kevin function if the inequality holds

$$
f(\lambda x+(1-\lambda) y) \leq \frac{f(x)}{\lambda}+\frac{f(y)}{1-\lambda}
$$

for all $x, y \in I$ and all $\lambda \in(0,1)$.

- A non-negative function $f: I \subset \mathbb{R} \triangle \mathbb{R}$ is called h-convex if the inequality holds

$$
f(\lambda x+(1-\lambda) y) \leq h(\lambda) f(x)+h(1-\lambda) f(y)
$$

for all $x, y \in I$ and all $\lambda \in(0,1)$, where $h: J \rightarrow \mathbb{R}$ is a non-negative function, $h \not \equiv 0$, $(0,1) \subseteq J$.

- A function $f:[0, b] \rightarrow \mathbb{R}$ is called m-convex if the inequality holds

$$
f(\lambda x+m(1-\lambda) y) \leq \lambda f(x)+m(1-\lambda) f(y)
$$

for all $x, y \in[0, b]$ and all $\lambda \in[0,1]$, where $m \in[0,1]$.

- A non-negative function $f:[0, b] \rightarrow \mathbb{R}$ is called $(h-m)$-convex if the inequality holds

$$
f(\lambda x+m(1-\lambda) y) \leq h(\lambda) f(x)+m h(1-\lambda) f(y)
$$

for all $x, y \in[0, b]$ and all $\lambda \in(0,1)$, where $h: J \rightarrow \mathbb{R}$ is a non-negative function, $h \not \equiv 0,(0,1) \subseteq J$ and $m \in[0,1]$.

- A non-negative function $f: I \subset \mathbb{R} \rightarrow \mathbb{R}$ is called (s, m)-Godunova-Levin function of the second kind if the inequality holds

$$
f(\lambda x+m(1-\lambda) y) \leq \frac{f(x)}{\lambda^{s}}+\frac{m f(y)}{(1-\lambda)^{s}}
$$

for all $x, y \in I$ and all $\lambda \in(0,1)$, where $m \in(0,1], s \in[0,1]$.

- A function $f: I \subset \mathbb{R} \rightarrow \mathbb{R}$ is called exponential convex if the inequality holds

$$
f(\lambda x+(1-\lambda) y) \leq \frac{\lambda}{e^{\alpha x}} f(x)+\frac{1-\lambda}{e^{\alpha y}} f(y)
$$

for all $x, y \in I$ and all $\lambda \in[0,1]$, where $\alpha \in \mathbb{R}$.

- A function $f: I \subset \mathbb{R} \rightarrow \mathbb{R}$ is called exponentially s-convex in the second sense if the inequality holds

$$
f(\lambda x+(1-\lambda) y) \leq \frac{\lambda^{s}}{e^{\alpha x}} f(x)+\frac{(1-\lambda)^{s}}{e^{\alpha y}} f(y)
$$

for all $x, y \in I$ and all $\lambda \in[0,1]$, where $\alpha \in \mathbb{R}, s \in(0,1]$.
More detailed information may be found in $[8,10,12,15,20,23,24,27,35,36]$.
Furthermore, recall that a real valued function f on the interval l is said to be starshaped if
whenever $x \in I, \lambda x \in I$ and $\lambda \in[0,1]$.
This chapter is based on our results from [1], [2], [3], [6] and [7].

3.1 A class of $(h, g ; m)$-convex functions

Definition 3.1 Let h be a nonnegative function on $J \subseteq \mathbb{R},(0,1) \subseteq J, h \not \equiv 0$ and let g be a positive function on $I \subseteq \mathbb{R}$. Furthermore, let $m \in(0,1]$. A function $f: I \rightarrow \mathbb{R}$ is said to be an $(h, g ; m)$-convex function if it is nonnegative and if

$$
\begin{equation*}
f(\lambda x+m(1-\lambda) y) \leq h(\lambda) f(x) g(x)+m h(1-\lambda) f(y) g(y) \tag{3.3}
\end{equation*}
$$

holds for all $x, y \in 1$ and all $\lambda \in(0,1)$.
If (3.3) holds in the reversed sense, then f is said to be an $(h, g ; m)$-concave function.
Remark 3.1 For different choices of functions h, g and parameter m in (3.3), we can obtain corresponding convexity, e.g., if we set $h(\lambda)=\lambda^{s}, s \in(0,1], g(x)=e^{-\alpha x}, \alpha \in \mathbb{R}$, then $(h, g ; m)$-convexity reduces to exponentially (s, m)-convexity in the second sense (3.2).

Lemma 3.1 If $f: I \rightarrow[0, \infty)$ is an $(h, g ; m)$-convex function such that $f(0)=0, g(x) \leq 1$ and $h(\lambda) \leq \lambda$, then f is starshaped.

Proof. Let f be an $(h, g ; m)$-convex function. Then we have

$$
\begin{aligned}
f(\lambda x) & =f(\lambda x+m(1-\lambda) 0) \\
& \leq h(\lambda) f(x) g(x)+m h(1-\lambda) f(0) g(0) \\
& \leq \lambda f(x)
\end{aligned}
$$

Therefore, f is a starshaped.

Remark 3.2 Let g be a positive function such that $g(x) \geq 1$. If f is a nonnegative $(h-m)$ convex function on $[0, \infty)$, then we have

$$
\begin{aligned}
f(\lambda x+m(1-\lambda) y) & \leq h(\lambda) f(x)+m h(1-\lambda) f(y) \\
& \leq h(\lambda) f(x) g(x)+m h(1-\lambda) f(y) g(y)
\end{aligned}
$$

Hence, f is an $(h, g ; m)$-convex function.
If additionally $h(\lambda) \geq \lambda$, then for nonnegative m-convex function f on $[0, \infty)$ we have

$$
\begin{aligned}
f(\lambda x+m(1-\lambda) y) & \leq \lambda f(x)+m(1-\lambda) f(y) \\
& \leq h(\lambda) f(x)+m h(1-\lambda) f(y) \\
& \leq h(\lambda) f(x) g(x)+m h(1-\lambda) f(y) g(y),
\end{aligned}
$$

i.e., f is an $(h, g ; m)$-convex function. An example of a function that satisfies $h(\lambda) \geq \lambda$ is $h(\lambda)=\lambda^{k}$, where $k \leq 1$ and $\lambda \in(0,1)$.

Similarly, if $g(x) \leq 1$, then all nonnegative $(h-m)$-concave functions are $(h, g ; m)$ concave functions on $[0, \infty)$. Furthermore, if $g(x) \leq 1$ and $h(\lambda) \leq \lambda$, then all nonnegative m-concave functions are $(h, g ; m)$-concave functions on $0, \infty)$.

Proposition 3.1 Let h_{1}, h_{2} be nonnegative functions on $J \subseteq \mathbb{R},(0,1) \subseteq J, h_{1}, h_{2} \not \equiv 0$, such that

$$
h_{2}(\lambda) \leq h_{1}(\lambda), \quad \lambda \in(0,1)
$$

Let g be a positive function on $I \subseteq \mathbb{R}$ and $m \in(0,1]$. If $f: I \rightarrow[0, \infty)$ is an $\left(h_{2}, g ; m\right)$-convex function, then f is $\left(h_{1}, g ; m\right)$-conver.

If $f: I \rightarrow[0, \infty)$ is an $\left(h_{1}, g ; m\right)$-concave function, then f is $\left(h_{2}, g ; m\right)$-concave.
Proof. Let f be an (h_{2}, g; m)-convex function. Then we have

$$
\begin{aligned}
f(\lambda x+m(1-\lambda) y) & \leq h_{2}(\lambda) f(x) g(x)+m h_{2}(1-\lambda) f(y) g(y) \\
& \leq h_{1}(\lambda) f(x) g(x)+m h_{1}(1-\lambda) f(y) g(y) .
\end{aligned}
$$

Hence, f is an $\left(h_{1}, g ; m\right)$-convex function.
If f is an $\left(h_{1}, g ; m\right)$-concave function, then analogously follows that f is $\left(h_{2}, g ; m\right)$ concave.

Proposition 3.2 Let h be a nonnegative function on $J \subseteq \mathbb{R},(0,1) \subseteq J, h \not \equiv 0$ and g be a positive function on $I \subseteq \mathbb{R}$. Furthermore, let $m \in(0,1]$ and $\alpha>0$. If $f_{1}, f_{2}: I \rightarrow[0, \infty)$ are ($h, g ; m$)-convex functions, then $f_{1}+f_{2}$ and αf_{1} are $(h, g ; m)$-convex.

If $f_{1}, f_{2}: I \rightarrow[0, \infty)$ are $(h, g ; m)$-concave functions, then $f_{1}+f_{2}$ and αf_{1} are $(h, g ; m)$ concave.

Proof. Let f_{1}, f_{2} be $(h, g ; m)$-convex functions and $\alpha>0$. Then we have

$$
f_{1}(\lambda x+m(1-\lambda) y) \leq h(\lambda) f_{1}(x) g(x)+m h(1-\lambda) f_{1}(y) g(y)
$$

and

$$
f_{2}(\lambda x+m(1-\lambda) y) \leq h(\lambda) f_{2}(x) g(x)+m h(1-\lambda) f_{2}(y) g(y) .
$$

Adding the above we obtain

$$
\left[f_{1}+f_{2}\right](\lambda x+m(1-\lambda) y) \leq h(\lambda)\left[f_{1}+f_{2}\right](x) g(x)+m h(1-\lambda)\left[f_{1}+f_{2}\right](y) g(y) .
$$

Furthermore,

$$
\begin{aligned}
{\left[\alpha f_{1}\right](\lambda x+m(1-\lambda) y) } & \leq \alpha h(\lambda) f_{1}(x) g(x)+\alpha m h(1-\lambda) f_{1}(y) g(y) \\
& =h(\lambda)\left[\alpha f_{1}\right](x) g(x)+\operatorname{mh}(1-\lambda)\left[\alpha f_{1}\right](y) g(y) .
\end{aligned}
$$

We conclude that $f_{1}+f_{2}$ and αf_{1} are $\left(h_{1}, g ; m\right)$-convex.
If $f_{1}, f_{2}: I \rightarrow[0, \infty)$ are $(h, g ; m)$-concave functions, then analogously follows that $f_{1}+$ f_{2} and αf_{1} are $(h, g ; m)$-concave.

Proposition 3.3 Let h be a nonnegative function on $\mathcal{F} \subseteq \mathbb{R},(0,1) \subseteq J, h \not \equiv 0$ and g be a positive increasing function on $I \subseteq \mathbb{R}$. Furthermore, let $0<n<m \leq 1$. If $f: I \rightarrow[0, \infty)$ is an $(h, g ; m)$-convex function such that $f(0)=0, g(x) \leq 1$ and $h(\lambda) \leq \lambda$, then f is $(h, g ; n)$ convex.

Proof. Let f be an $(h, g ; m)$-convex function. Erom $f(0)=0, g(x) \leq 1$ and $h(\lambda) \leq \lambda$ by Lemma 3.1 follows $f(\lambda x) \leq \lambda f(x)$. Considering also that g is an increasing function, we obtain

$$
\begin{aligned}
f(\lambda x+n(1-\lambda) y) & =f\left(\lambda x+m(1-\lambda)\left(\frac{n}{m} y\right)\right) \\
& \leq h(\lambda) f(x) g(x)+m h(1-\lambda) f\left(\frac{n}{m} y\right) g\left(\frac{n}{m} y\right) \\
& \leq h(\lambda) f(x) g(x)+m h(1-\lambda) \frac{n}{m} f(y) g(y),
\end{aligned}
$$

which proves that f is $(h, g ; n)$-convex.

Proposition 3.4 Let h_{1}, h_{2} be nonnegative functions on $J \subseteq \mathbb{R},(0,1) \subseteq J, h_{1}, h_{2} \not \equiv 0$ and let

$$
h(t)=\max \left\{h_{1}(t), h_{2}(t)\right\}, \quad t \in J .
$$

Let g_{1}, g_{2} be positive functions on $I \subseteq \mathbb{R}$ and let $m_{1}, m_{2} \in(0,1]$. For $i=1,2$, let $f_{i}: I \rightarrow$ $[0, \infty)$ be ($h_{i}, g_{i} ; m_{i}$)-convex functions. If the functions $f_{1} g_{1}$ and $f_{2} g_{2}$ are monotonic in the same sense, i.e.

$$
\left[f_{1}(x) g_{1}(x)-f_{1}(y) g_{1}(y)\right]\left[f_{2}(x) g_{2}(x)-f_{2}(y) g_{2}(y)\right] \geq 0, \quad x, y \in I
$$

and if $c>0$ such that

$$
h(\lambda)+m h(1-\lambda) \leq c, \quad \lambda \in(0,1),
$$

where $m=\max \left\{m_{1}, m_{2}\right\}$, then $f_{1} f_{2}$ is a $\left(\right.$ ch, $\left.g_{1} g_{2} ; m\right)$-convex function.

Proof. Let $f_{i}: I \rightarrow[0, \infty)$ be $\left(h_{i}, g_{i} ; m_{i}\right)$-convex functions, $i=1,2$. From hypotheses on functions, for $x, y \in I$ we have

$$
\begin{aligned}
& f_{1}(x) g_{1}(x) f_{2}(x) g_{2}(x)+f_{1}(y) g_{1}(y) f_{2}(y) g_{2}(y) \\
& \quad \geq f_{1}(x) g_{1}(x) f_{2}(y) g_{2}(y)+f_{1}(y) g_{1}(y) f_{2}(x) g_{2}(x)
\end{aligned}
$$

Let α and $\beta>0$ be positive numbers such that $\alpha+\beta=1$. Then we have

$$
\begin{aligned}
f_{1} f_{2}(& \alpha x+\beta y) \\
\leq & {\left[h_{1}(\alpha) f_{1}(x) g_{1}(x)+m_{1} h_{1}(\beta) f_{1}(y) g_{1}(y)\right] } \\
& \times\left[h_{2}(\alpha) f_{2}(x) g_{2}(x)+m_{2} h_{2}(\beta) f_{2}(y) g_{2}(y)\right] \\
\leq & {\left[h(\alpha) f_{1}(x) g_{1}(x)+m h(\beta) f_{1}(y) g_{1}(y)\right] } \\
& \times\left[h(\alpha) f_{2}(x) g_{2}(x)+m h(\beta) f_{2}(y) g_{2}(y)\right] \\
= & h^{2}(\alpha) f_{1}(x) g_{1}(x) f_{2}(x) g_{2}(x)+m h(\alpha) h(\beta) f_{1}(x) g_{1}(x) f_{2}(y) g_{2}(y) \\
& +m h(\alpha) h(\beta) f_{1}(y) g_{1}(y) f_{2}(x) g_{2}(x)+m^{2} h^{2}(\beta) f_{1}(y) g_{1}(y) f_{2}(y) g_{2}(y),
\end{aligned}
$$

hence

$$
\begin{aligned}
& f_{1} f_{2}(\alpha x+\beta y) \\
& \leq h^{2}(\alpha) f_{1}(x) g_{1}(x) f_{2}(x) g_{2}(x)+m h(\alpha) h(\beta) f_{1}(x) g_{1}(x) f_{2}(x) g_{2}(x) \\
&+m h(\alpha) h(\beta) f_{1}(y) g_{1}(y) f_{2}(y) g_{2}(y)+m^{2} h^{2}(\beta) f_{1}(y) g_{1}(y) f_{2}(y) g_{2}(y) \\
&= {[h(\alpha)+m h(\beta)] } \\
& \times\left[h(\alpha) f_{1}(x) f_{2}(x) g_{1}(x) g_{2}(x)+m h(\beta) f_{1}(y) f_{2}(y) g_{1}(y) g_{2}(y)\right] \\
& \leq \operatorname{ch}(\alpha) f_{1}(x) f_{2}(x) g_{1}(x) g_{2}(x)+m \operatorname{ch}(\beta) f_{1}(y) f_{2}(y) g_{1}(y) g_{2}(y) .
\end{aligned}
$$

This proves that $f_{1} f_{2}$ is $\left(c h, g_{1} g_{2} ; m\right)$-convex.
Analogously follows the following proposition.
Proposition 3.5 Let h_{1}, h_{2} be nonnegative functions on $J \subseteq \mathbb{R},(0,1) \subseteq J, h_{1}, h_{2} \not \equiv 0$ and let

$$
h(t)=\min \left\{h_{1}(t), h_{2}(t)\right\}, \quad t \in J .
$$

Let g_{1}, g_{2} be positive functions on $I \subseteq \mathbb{R}$ and let $m_{1}, m_{2} \in(0,1]$. For $i=1,2$, let $f_{i}: I \rightarrow$ $[0, \infty)$ be $\left(h_{i}, g_{i} ; m_{i}\right)$-concave functions. If the functions $f_{1} g_{1}$ and $f_{2} g_{2}$ are monotonic in the opposite sense, i.e.

$$
\left[f_{1}(x) g_{1}(x)-f_{1}(y) g_{1}(y)\right]\left[f_{2}(x) g_{2}(x)-f_{2}(y) g_{2}(y)\right] \leq 0, \quad x, y \in I
$$

and if $c>0$ such that

$$
h(\lambda)+m h(1-\lambda) \geq c, \quad \lambda \in(0,1)
$$

where $m=\min \left\{m_{1}, m_{2}\right\}$, then $f_{1} f_{2}$ is a $\left(c h, g_{1} g_{2} ; m\right)$-concave function.

3.2 Hermite-Hadamard type inequalities for ($h, g ; m$)-convex functions

The famous Hermite-Hadamard inequality gives us an estimate of the (integral) mean value of a continuous convex function.

Theorem 3.1 (The Hermite-Hadamard inequality) Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous convex function. Then

$$
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \frac{f(a)+f(b)}{2}
$$

Of course, equality holds in either side only for affine functions. In this section we prove the Hermite-Hadamard inequality for $(h, g ; m)$-convex functions and we point out some special results. Furthermore, several known inequalities are improved.

Recall, by $L_{p}[a, b], 1 \leq p<\infty$, the space of alt Lebesgue measurable functions f for which $\left|f^{p}\right|$ is Lebesgue integrable on $[a, b]$ is denoted.

Theorem 3.2 Let f be a nonnegative $(h, g ; m)$-convex function on $[0, \infty)$ where h is a nonnegative function on $J \subseteq \mathbb{R},(0,1) \subseteq J, h \not \equiv 0, g$ is a positive function on $[0, \infty)$ and $m \in(0,1]$. If $f, g, h \in L_{1}[a, b]$, where $0<a<b<\infty$, then the following inequalities hold

$$
\begin{align*}
f\left(\frac{a+b}{2}\right) \leq & \frac{h\left(\frac{1}{2}\right)}{b-a} \int_{a}^{b}\left[f(x) g(x)+m f\left(\frac{x}{m}\right) g\left(\frac{x}{m}\right)\right] d x \\
& \leq \frac{h\left(\frac{1}{2}\right) f(a) g(a)}{b-a} \int_{a}^{b} h\left(\frac{b-x}{b-a}\right) g(x) d x \\
& +\frac{m h\left(\frac{1}{2}\right) f\left(\frac{b}{m}\right) g\left(\frac{b}{m}\right)}{b-a} \int_{a}^{b} h\left(\frac{x-a}{b-a}\right) g(x) d x \\
& +\frac{m h\left(\frac{1}{2}\right) f\left(\frac{a}{m}\right) g\left(\frac{a}{m}\right)}{b-a} \int_{a}^{b} h\left(\frac{b-x}{b-a}\right) g\left(\frac{x}{m}\right) d x \\
& +\frac{m^{2} h\left(\frac{1}{2}\right) f\left(\frac{b}{m^{2}}\right) g\left(\frac{b}{m^{2}}\right)}{b-a} \int_{a}^{b} h\left(\frac{x-a}{b-a}\right) g\left(\frac{x}{m}\right) d x \tag{3.4}
\end{align*}
$$

Proof. Let f be an $(h, g ; m)$-convex function. Then for $\lambda=\frac{1}{2}$ we have

$$
f\left(\frac{x+m y}{2}\right) \leq h\left(\frac{1}{2}\right)[f(x) g(x)+m f(y) g(y)] .
$$

Choosing $y \equiv \frac{y}{m}$ we obtain

$$
\begin{equation*}
f\left(\frac{x+y}{2}\right) \leq h\left(\frac{1}{2}\right)\left[f(x) g(x)+m f\left(\frac{y}{m}\right) g\left(\frac{y}{m}\right)\right] . \tag{3.5}
\end{equation*}
$$

Let $x=\lambda a+(1-\lambda) b$ and $y=(1-\lambda) a+\lambda b$. Then

$$
\begin{aligned}
f\left(\frac{a+b}{2}\right) \leq & h\left(\frac{1}{2}\right)[f(\lambda a+(1-\lambda) b) g(\lambda a+(1-\lambda) b) \\
& \left.+m f\left((1-\lambda) \frac{a}{m}+\lambda \frac{b}{m}\right) g\left((1-\lambda) \frac{a}{m}+\lambda \frac{b}{m}\right)\right] .
\end{aligned}
$$

In the following step we will need to integrate the above over $\lambda \in[0,1]$. From

$$
\int_{0}^{1} f(\lambda a+(1-\lambda) b) g(\lambda a+(1-\lambda) b) d \lambda=\frac{1}{b-a} \int_{a}^{b} f(u) g(u) d u
$$

and

$$
\int_{0}^{1} f\left((1-\lambda) \frac{a}{m}+\lambda \frac{b}{m}\right) g\left((1-\lambda) \frac{a}{m}+\lambda \frac{b}{m}\right) d \lambda=\frac{1}{b-a} \int_{a}^{b} f\left(\frac{u}{m}\right) g\left(\frac{u}{m}\right) d u
$$

we obtain

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{h\left(\frac{1}{2}\right)}{b-a} \int_{a}^{b}\left[f(u) g(u)+m f\left(\frac{u}{m}\right) g\left(\frac{u}{m}\right)\right] d u \tag{3.6}
\end{equation*}
$$

By $(h, g ; m)$-convexity of f we have

$$
f(\lambda a+(1-\lambda) b) \leq h(\lambda) f(a) g(a)+m h(1-\lambda) f\left(\frac{b}{m}\right) g\left(\frac{b}{m}\right) .
$$

Multiplying the above inequality by $g(\lambda a+(1-\lambda) b)$ and integrating over $\lambda \in[0,1]$ we obtain

$$
\begin{align*}
\frac{1}{b-a} \int_{a}^{b} f(u) g(u) d u \leq & f(a) g(a) \int_{0}^{1} h(\lambda) g(\lambda a+(1-\lambda) b) d \lambda \\
& +m f\left(\frac{b}{m}\right) g\left(\frac{b}{m}\right) \int_{0}^{1} h(1-\lambda) g(\lambda a+(1-\lambda) b) d \lambda \\
= & \frac{f(a) g(a)}{b-a} \int_{a}^{b} h\left(\frac{b-u}{b-a}\right) g(u) d u \\
& +\frac{m f\left(\frac{b}{m}\right) g\left(\frac{b}{m}\right)}{b-a} \int_{a}^{b} h\left(\frac{u-a}{b-a}\right) g(u) d u . \tag{3.7}
\end{align*}
$$

Again, by $(h, g ; m)$-convexity of f we have

$$
f\left((1-\lambda) \frac{a}{m}+\lambda \frac{b}{m}\right) \leq h(1-\lambda) f\left(\frac{a}{m}\right) g\left(\frac{a}{m}\right)+m h(\lambda) f\left(\frac{b}{m^{2}}\right) g\left(\frac{b}{m^{2}}\right)
$$

and if we multiply above inequality by $g\left((1-\lambda) \frac{a}{m}+\lambda \frac{b}{m}\right)$ and integrate over $\lambda \in[0,1]$ we obtain

$$
\begin{align*}
\frac{1}{b-a} \int_{a}^{b} f\left(\frac{u}{m}\right) g\left(\frac{u}{m}\right) d u \leq & f\left(\frac{a}{m}\right) g\left(\frac{a}{m}\right) \int_{0}^{1} h(1-\lambda) g\left((1-\lambda) \frac{a}{m}+\lambda \frac{b}{m}\right) d \lambda \\
& +m f\left(\frac{b}{m^{2}}\right) g\left(\frac{b}{m^{2}}\right) \int_{0}^{1} h(\lambda) g\left((1-\lambda) \frac{a}{m}+\lambda \frac{b}{m}\right) d \lambda \\
= & \frac{f\left(\frac{a}{m}\right) g\left(\frac{a}{m}\right)}{b-a} \int_{a}^{b} h\left(\frac{b-u}{b-a}\right) g\left(\frac{u}{m}\right) d u \\
& +\frac{m f\left(\frac{b}{m^{2}}\right) g\left(\frac{b}{m^{2}}\right)}{b-a} \int_{a}^{b} h\left(\frac{u-a}{b-a}\right) g\left(\frac{u}{m}\right) d u \tag{3.8}
\end{align*}
$$

Now from (3.6), (3.7) and (3.8) we obtain (3.4).
In the sequel we state several corollaries, using special functions for h and/or g, and choosing the parameter m. We start with the first spectal case: if $g \equiv 1$, then we have the Hermite-Hadamard inequality for $(h-m)$-convex functions.

Corollary 3.1 Let f be a nonnegative $(h-m)$-convex function on $[0, \infty)$ where h is a nonnegative function on $J \subseteq \mathbb{R},(0,1) \subseteq J, h \neq 0$ and $m \in(0,1]$. If $f, h \in L_{1}[a, b]$, where $0 \leq a<b<\infty$, then the following inequalities hold

$$
\begin{align*}
f\left(\frac{a+b}{2}\right) & \leq \frac{h\left(\frac{1}{2}\right)}{b-a} \int_{a}^{b}\left[f(x)+m f\left(\frac{x}{m}\right)\right] d x \\
& \leq h\left(\frac{1}{2}\right) \int_{0}^{1} h(x) d x\left[f(a)+m f\left(\frac{b}{m}\right)+m f\left(\frac{a}{m}\right)+m^{2} f\left(\frac{b}{m^{2}}\right)\right] . \tag{3.9}
\end{align*}
$$

Proof. We use

$$
\int_{a}^{b} h\left(\frac{b-x}{b-a}\right) d x=\int_{a}^{b} h\left(\frac{x-a}{b-a}\right) d x=(b-a) \int_{0}^{1} h(u) d u
$$

Remark 3.3 In [24, Theorem 9] authors gave the following Hermite-Hadamard type inequality for $(h-m)$-convex functions:

$$
\begin{align*}
f\left(\frac{a+b}{2}\right) & \leq \frac{h\left(\frac{1}{2}\right)}{b-a} \int_{a}^{b}\left[f(x)+m f\left(\frac{x}{m}\right)\right] d x \\
& \leq h\left(\frac{1}{2}\right)\left[f(a)+m f\left(\frac{b}{m}\right)+m f\left(\frac{a}{m}\right)+m^{2} f\left(\frac{b}{m^{2}}\right)\right] \tag{3.10}
\end{align*}
$$

For all functions h such that $\int_{0}^{1} h(x) d x \leq 1$, our result (3.9) will improve (3.10).
If $g \equiv 1$ and $m=1$, then we have the Hermite-Hadamard inequality for h-convex functions ([36]):

Corollary 3.2 Let f be a nonnegative h-convex function on $[0, \infty)$ where h is a nonnegative function on $J \subseteq \mathbb{R},(0,1) \subseteq J, h \not \equiv 0$. If $f, h \in L_{1}[a, b]$, where $0 \leq a<b<\infty$, then the following inequalities hold

$$
\begin{align*}
\frac{1}{2} f\left(\frac{a+b}{2}\right) & \leq \frac{h\left(\frac{1}{2}\right)}{b-a} \int_{a}^{b} f(x) d x \\
& \leq h\left(\frac{1}{2}\right)[f(a)+f(b)] \int_{0}^{1} h(x) d x \tag{3.11}
\end{align*}
$$

For h being identity and $g \equiv 1$, the Hermite-Hadamard type inequality for m-convex functions holds ([11]):

Corollary 3.3 Let f be a nonnegative m-convex function on $[0, \infty)$ with $m \in(0,1]$. If $f \in L_{1}[a, b]$, where $0 \leq a<b<\infty$, then the following inequalities hol

$$
\begin{aligned}
f\left(\frac{a+b}{2}\right) & \leq \frac{1}{2(b-a)} \int_{a}^{b}\left[f(x)+m f\left(\frac{x}{m}\right)\right] d x \\
& \leq \frac{1}{4}\left[f(a)+m f\left(\frac{b}{m}\right)+m f\left(\frac{a}{m}\right)+m^{2} f\left(\frac{b}{m^{2}}\right)\right] .
\end{aligned}
$$

Of course, if $h(x)=x, g \equiv 1$ and $m=1$, then we haye the Hermite-Hadamard inequality given in Theorem 3.1.

An interesting Hermite-Hadamard type inequality follows if h is an identity.
Corollary 3.4 Suppose that assumptions of Thenrem 3.2 hold and let $h(x)=x$. Then

$$
\begin{align*}
f\left(\frac{a+b}{2}\right) \leq & \frac{1}{2(b-a)} \int_{a}^{b}\left[f(x) g(x)+m f\left(\frac{x}{m}\right) g\left(\frac{x}{m}\right)\right] d x \\
\leq & \frac{f(a) g(a)}{2(b-a)^{2}} \int_{a}^{b}(b-x) g(x) d x \\
& +\frac{m f\left(\frac{b}{m}\right) g\left(\frac{b}{m}\right)}{2(b-a)^{2}} \int_{a}^{b}(x-a) g(x) d x \\
& +\frac{m f\left(\frac{a}{m}\right) g\left(\frac{a}{m}\right)}{2(b-a)^{2}} \int_{a}^{b}(b-x) g\left(\frac{x}{m}\right) d x \\
& +\frac{m^{2} f\left(\frac{b}{m^{2}}\right) g\left(\frac{b}{m^{2}}\right)}{2(b-a)^{2}} \int_{a}^{b}(x-a) g\left(\frac{x}{m}\right) d x . \tag{3.12}
\end{align*}
$$

Next we use $h(\lambda)=\lambda^{s}, s \in(0,1]$ and a special case of a positive function $g(x)=e^{-\alpha x}$, $\alpha \in \mathbb{R}$, to obtain a following new Hermite-Hadamard inequality for exponentially (s, m) convex functions in the second sense.

Corollary 3.5 Let f be a nonnegative exponentially (s, m)-convex function in the second sense on $[0, \infty)$ where $s, m \in(0,1]$. If $f \in L_{1}[a, b]$, where $0 \leq a<b<\infty$, then the following inequalities hold

