Chapter

Class of (h,g;m)-

functlons and c?;‘h

types of ine @ es

A convex function is o igraph is a convex set, or, as in the basic definition:

A functi is said to be convex function if
X+ ( Y) SAfx)+(1=2)f() G.D

holds intsx andy in I and all A € [0,1].

It is ca ctly convex if the inequality (3.1) holds strictly whenever x and
y are distinct points and A € (0,1). If —f is convex (respectively, strictly
convex) then we say that f is concave (respectively, strictly concave). If f is
both convex and concave, then f is said to be affine.

Motivated by a large number of different classes of convexity, we present a new con-
vexity that unifies a certain range of them. Starting from the above convex function up to
a recent convexity [27]:

A function f : I C R — R is called exponentially (s,m)-convex in the second
sense if the following inequality holds

AS 1—21)
foatm-2 < 2w+ ) 6
forall x,y € I and all A € ]0,1], where o0 € R, s,m € (0, 1].
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68 3 (h,g;m)-CONVEX FUNCTIONS AND CERTAIN TYPES OF INEQUALITIES

we noticed that the whole range in-between could be covered if we use on the right-hand
side functions / and g in a form

fAx+m(1=2A)y) <h(R)f(x)g(x) +mh(1 =) f(y)g(y).

We named this convexity an (h, g;m)-convexity.
Here are several more varieties of convexity that will be generalized with this:

e A non-negative function f : I C R — R is called P-function if the inequality holds

fAx+(1=2)y) <F(X)+f()
forall x,y € I and all A € [0, 1].

e A function f : [0,0) — [0,0) is called s-convex in the second sense ifighe inequality
holds
FOAx+(1=2)y) <A°f(x) —A1)°

for all x,y € [0,0) and all A € [0, 1], where s € (0, 1

e A non-negative function f: I C R — R is called G va-M@vin function if the

inequality holds
fAx+(1-

forall x,y € Iandall A € (0,1).

e A non-negative function f: I C R

F(Ax+(

h-convex if the inequality holds

for all x,y € I and all 4 ere h: J — R is a non-negative function, 2 # 0,
(0,1)CJ.

e A function f: [0,b ed m-convex if the inequality holds
TXEm(1=2)y) SAf(x)+m(1=A)f(y)
for all x,y € [05 all A € [0,1], where m € [0,1].

e A non-negative function f : [0,b] — R is called (h — m)-convex if the inequality
holds
fAx4+m(1=2)y) <h(A)f(x)+mh(1=2A)f(y)

for all x,y € [0,b] and all A € (0,1), where & :J — R is a non-negative function,
h#£0,(0,1) CJandm € [0,1].

e A non-negative function f : I C R — R is called (s,m)-Godunova-Levin function of
the second kind if the inequality holds

fAx+m(1=2)y) <

forall x,y € I and all A € (0,1), where m € (0,1], s € [0,1].
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e A function f: I C R — R is called exponential convex if the inequality holds

Flr+(1=2)y) < 2 p+ =2

0X o0y

f)

forall x,y € I and all A € [0,1], where a € R.

e A function f: I C R — R is called exponentially s-convex in the second sense if the
inequality holds
AS (1-2)*
fOx+(1=A)y) < 2 f () +—f0)
forallx,y € I and all A € [0,1], where @ € R, s € (0,1].

More detailed information may be found in [8, 10, 12, 15, 20, 4,27, 35, 36].
Furthermore, recall that a real valued function f on thegnte is to be starshaped

if
F(Ax) <Af(x
whenever x € [,Ax € I and A € [0,1].
This chapter is based on our results from [1], [ 6 a&l [7].

3.1 Aclass of (h,g; x functions

Definition 3.1 Let h be a
positive function on I

SunctiononJ CR, (0,1) CJ, hZ0 and let g be a
rmore, let m € (0,1]. A function f: I — R is said to be

an (h,g;m)-congex fu ifgit is'nonnegative and if
S (Mt A)y) S h(A)f(x)g(x) +mh(1—A)f(y)g(y) 3.3)
holds for al ndull A € (0,1).
If (3.3) s injthe reversed sense, then f is said to be an (h,g;m)-concave function.

Remark 3.1 For different choices of functions /, g and parameter m in (3.3), we can
obtain corresponding convexity, e.g., if we set (1) = A%, s € (0,1], g(x) = e~ *, o0 € R,
then (h, g;m)-convexity reduces to exponentially (s,m)-convexity in the second sense (3.2).

Lemma 3.1 If f: I — [0,) is an (h,g;m)-convex function such that f(0) =0, g(x) <1
and h(A) < A, then f is starshaped.

Proof. Let f be an (h, g;m)-convex function. Then we have
f(Ax) = f(Ax+m(1—2)0)
< h(A)f(x)g(x) +mh(1—2)f(0)g(0)
< Af(x).

Therefore, f is a starshaped. o
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Remark 3.2 Let g be a positive function such that g(x) > 1. If f is a nonnegative (h—m)-
convex function on [0, ), then we have

(A)f () +mh(1=2)f(y)
(A)f ()g(x) +mh(l =) f(v)g(y)-

Hence, f is an (h, g;m)-convex function.
If additionally #(A) > A, then for nonnegative m-convex function f on [0, ) we have

FAx4+m(1=2A)y) < Af(x)+m(1—A)f(y)
< h(A)f(x) +mh(1—=L)f(y)
h(A)f(x)g(x) +mh(1—A)f(y)g(»)S

i.e., f is an (h,g;m)-convex function. An example of a function
h(A) = Ak, where k < 1and A € (0,1).

Similarly, if g(x) < 1, then all nonnegative (h — m)- ve functigns are (h,g;m)-
concave functions on [0,e). Furthermore, if g(x) < 1 and < A then all nonnegative
m-concave functions are (%, g;m)-concave functions o

fAx+m(1—2A)y) <h
<h

IN

Proposition 3.1 Let hy,h; be nonnegative functi JCR, (0,1) CJ, hy,hy #£0,
such that
hz(k) < hi S 1).

Let g be a positive function on [ C R
function, then f is (hy,g;m)-conve.
If f:1—1]0,00) is an (hy,g;

Proof. Let f be an (hig;m) nction. Then we have

f(Ax < ha(A)f(x)g(x) +mha(1—2)f(v)g(v)

< h(A)f(x)g(x) +mhy(1=2)f(y)g(y).

Hence, f is an (hy, g;nt)-convex function.
If f is an (hy,g;m)-concave function, then analogously follows that f is (ha,g;m)-
concave. ]

Proposition 3.2 Let h be a nonnegative function on J CR, (0,1) CJ, h#£ 0 and g be a
positive function on I CR. Furthermore, let m € (0,1] and a > 0. If fi, f> : I — [0,00) are
(h,g;m)-convex functions, then fi + f> and o fy are (h,g;m)-convex.

If f1, /2 : 1 —[0,00) are (h,g;m)-concave functions, then f| + f» and o.f; are (h,g;m)-
concave.

Proof. Let f1, f> be (h,g;m)-convex functions and ¢ > 0. Then we have

fi(Ax+m(1—=2)y) <h(d)fi(x)g(x) +mh(1—1)f1(y)g(y)
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and
SrAx+m(1=2A)y) <h(A) f2(x)g(x) +mh(1—=21)f2(y)g(y)-
Adding the above we obtain
[fi+ 2l (Ax+m(1 = A)y) < h(A)[fi + f2] (x)g(x) +mh(1 = L) [fi + f2] (v)8(¥)-

Furthermore,

[afi](Ax+m(1—A)y) < oh(A)fi(x)g(x)+amh(l—A
= h()[afi] (x)g(x) +mh(1 -2
We conclude that f| + f> and af; are (hy,g;m)-convex.

If f1, f> : I — [0,e0) are (h, g;m)-concave functions, then analegously follows that f +
/> and o.f are (h,g;m)-concave. |

Proposition 3.3 Ler h be a nonnegative function CR (0WCJ, h£0andgbea
positive increasing function on I C R. Furthermore, <n@®@m<1Iff:1— [0,00) is
an (h,g;m)-convex function such that f(0) =0, 1 h(A) <A, then f is (h,g;n)-
convex.

Proof. Let f be an (h,g;m)-convex fuy
Lemma 3.1 follows f(Ax) < Af(x :
obtain

o’ f(0) =0, g(x) <1and h(A) < A by
also that g is an increasing function, we

fAx+n(1—2

INA
=
=
<
=
oy
=
+
3
=
p—
\
=

which prov s (h,g;n)-convex. O

Proposition 3.4 Let hy,hy be nonnegative functions on J C R, (0,1) CJ, hy,hy Z0 and
let
h(r) = max{h(¢),ha(t)}, t€J.

Let g1,82 be positive functions on I C R and let my,m; € (0,1]. Fori=1,2, let f;: 1 —
[0,00) be (hy,gi;m;)-convex functions. If the functions fi g\ and f> g» are monotonic in the
same sense, 1.e.

[fix)g1(x) = i)g1 ()] [2(x)g2(x) — 2(3)g2()] =0, x,y €,

and if ¢ > 0 such that
h(A)+mh(1—-L1)<c, A€(0,1),

where m = max{my,my}, then f| f> is a (ch,g1g2;m)-convex function.
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Proof. Let f; : 1 — [0,00) be (h;,g;i;m;)-convex functions, i = 1,2. From hypotheses on
functions, for x,y € I we have

fi(x)g1(x) f2(x)g2(x) + f1(y)g1(¥) f2(¥)g2(¥)
> fix)g1(x)2(v)g2(y) + f1(v)g1(v) f2(x)g2(x)-

Let o and B > 0 be positive numbers such that oo + 3 = 1. Then we have

fifa(ox+ By)
< [m(o)fi(x)gi(x) +mihi(B)fi1(y)g1(y)]
X [h2() f2(x)g2(x) + maha(B) f2(¥)82(v)]
< [r(a) fi(x)g1(x) +mh(B) fi(y)g1(¥)]
x[h(e) f2(x)g2(x) +mh(B) f2()g2(y)]
= 17(0) f1(x)g1(x) f2(x)g2(x) +mh(ct)h(B)
+mh(0)h(B) fi(v)g1(y) f2(x)g2(x) + m’h* (B
hence
fifa(ax+By)
< 1) fi(x)g1 (%) f2(x)g2(x)
+mh(a)h (

)
2 )82 (v).
This proves that f] f» \ . onvex. O

Analogously f owing proposition.
Proposition 3.5 2 be nonnegative functions on J CR, (0,1) CJ, hy,hy Z0 and
let

h(t) =min{h;(t),ha(t)}, te€J.

Let g1,82 be positive functions on I C R and let my,m; € (0,1]. Fori=1,2, let f;: 1 —
[0,00) be (hi,gi;mi)-concave functions. If the functions fi g and f> g2 are monotonic in
the opposite sense, i.e.

[fi(x)g1(x) = fi)g1 )] [f2(x)g2(x) — 2()g2()] <0, x,y €T,

and if ¢ > 0 such that
h(A)+mh(1—A)>c¢, A€(0,1),

where m = min{my,my}, then fi f> is a (ch,g182;m)-concave function.
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3.2 Hermite-Hadamard type inequalities for
(h,g;m)-convex functions

The famous Hermite-Hadamard inequality gives us an estimate of the (integral) mean value
of a continuous convex function.

Theorem 3.1 (THE HERMITE-HADAMARD INEQUALITY) Let f : [a,b] — R be a con-
tinuous convex function. Then

(%57 = 5o [ ran< T LOA

Of course, equality holds in either side only for affine
prove the Hermite-Hadamard inequality for (%, g;)-convex
some special results. Furthermore, several known in lities 3@ improved.

Recall, by L,[a,b], 1 < p < oo, the space of e measurable functions f for

which | f?| is Lebesgue integrable on [a, b] is dghote
Theorem 3.2 Let f be a nonnegative ) vex function on [0,00) where h is a
nonnegative function on J C R, (0,1) 0, g is a positive function on [0,°) and

me€ (0,1]. If f,g,h € Ly[a,b], whe oo, then the following inequalities hold

X

bt (2)e(2)]

m

Eﬁ)g(%) /abh<x_a>g(x)dx

a b—a
+mh(%)££ﬁa)g(%) /abh<z_2)g(n%>dx
+m2h(%)f;_m£;)g(%> /ab,,@_z)g(%)dx. (3.4)

Proof. Let f be an (h, g;m)-convex function. Then for A = % we have

752 <a(3) Ut + mr0)e0)

Choosing y = < we obtain

7(552) <0 (3) [rose+mr (2)e(2)]. (35)
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Letx=Aa+(1—A)bandy= (1—A)a+ Ab. Then

f(“;b> < (%) [F(hat (1= A)p)g(Ra+ (1~ A)b)

mf <(1—A)%+l%>g ((1-1)%”%)]

In the following step we will need to integrate the above over A € [0, 1]. From

/lf(ka—i-(l—k) b)g(ha+(1—2)

0 &
and
/01f<(1—x)%+lg)g( )9 &/a m)g<%>du
we obtain
SR=IAl @ (@)oo

By (h,g;m)-convexity of f we have

fRa+(1-2 a)gla)+mh(1—-A)f( — (2)

Multiplying the above in ka +(1- ) and integrating over A € [0,1] we

obtain
1 Qz 1
o [ 00 Bl < (@5t [ H0)gtha+ (1~ Ap)ai

fi(%)/j;,(::;‘)g(u)du. G.7)

Again, by (h,g;m)-convexity of f we have

(omgeag) s ar(a)s(s) smor () ()
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and if we multiply above inequality by g (1 —A)£ + A 2) and integrate over A € [0, 1] we
obtain

1

bia/abf<n%>g< )d”<f< g( ) Oh(ll)g((ll)%+kl%)dx

18 0 )

choosing the parameter m. We start with the first s
Hermite-Hadamard inequality for (A — m)-convex fu

Corollary 3.1 Let f be a nonnegative (h —g x function on [0,00) where h is a
nonnegative function on J C R, (0,1) CJ,_h ZWand n € (0,1]. If f,h € Ly[a,b], where

f(“;b> < %/k [

INA
N
A/
| =
~—
w_
+
3
\
/N
SEES
S~
+
3
<
/N
N—
+
3,
\
7N
3=
S~
@
N

Proof. We use

O

Remark 3.3 In [24, Theorem 9] authors gave the following Hermite-Hadamard type in-
equality for (h — m)-convex functions:

1(55) <58 T emr ()]
(Gl (5) on ()t (5] oo

For all functions 4 such that fol h(x)dx < 1, our result (3.9) will improve (3.10).

IN

If g = 1 and m = 1, then we have the Hermite-Hadamard inequality for 4-convex func-
tions ([36]):
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Corollary 3.2 Let f be a nonnegative h-convex function on [0,e) where h is a nonnega-
tive functionon J CR, (0,1) CJ, h £ 0. If f,h € Ly[a,b], where 0 < a < b < o, then the
following inequalities hold

—f(“”’) < %/abf@dx

0 (%) [F(a)+ Fb)] /0 Uh) . G.11)

IN

For h being identity and g = 1, the Hermite-Hadamard type inequality for m-convex
functions holds ([11]):

Corollary 3.3 Ler f be a nonnegative m-convex function on [0,c0) wit

f € Ly[a,b], where 0 < a < b < oo, then the following inequalmQ
a+b 1 b
<
1(47%) = mpmay |, lroremi
! (a) + +
7 | fla mf mf (8 =
Of course, if h(x) =x, g =1 andm =1, the Hermite-Hadamard inequality

given in Theorem 3.1.
An interesting Hermite-Hadamard ty

IN

llows if 4 is an identity.

Corollary 3.4 Suppose that assum rem 3.2 hold and let h(x) = x. Then

+W/tlb()¢a)g (%) dx. (3.12)

Next we use h(A) = A%, s € (0, 1] and a special case of a positive function g(x) = e~ **,
o € R, to obtain a following new Hermite-Hadamard inequality for exponentially (s,m)-
convex functions in the second sense.

Corollary 3.5 Let f be a nonnegative exponentially (s,m)-convex function in the second
sense on [0,0) where s,m € (0,1]. If f € Li[a,b], where 0 < a < b < oo, then the following
inequalities hold





