
Chapter3
Class of (h,g;m)-convex
functions and certain
types of inequalities

A convex function is one whose epigraph is a convex set, or, as in the basic definition:

A function f : I ⊆ R → R is said to be convex function if

f (λx+(1−λ )y)≤ λ f (x)+ (1−λ ) f (y) (3.1)

holds for all points x and y in I and all λ ∈ [0,1].

It is called strictly convex if the inequality (3.1) holds strictly whenever x and
y are distinct points and λ ∈ (0,1). If − f is convex (respectively, strictly
convex) then we say that f is concave (respectively, strictly concave). If f is
both convex and concave, then f is said to be affine.

Motivated by a large number of different classes of convexity, we present a new con-
vexity that unifies a certain range of them. Starting from the above convex function up to
a recent convexity [27]:

A function f : I ⊂ R → R is called exponentially (s,m)-convex in the second
sense if the following inequality holds

f (λx+m(1−λ )y) ≤ λ s

eαx f (x)+
(1−λ )s

eαy m f (y) (3.2)

for all x,y ∈ I and all λ ∈ [0,1], where α ∈ R, s,m ∈ (0,1].
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68 3 (h,g;m)-CONVEX FUNCTIONS AND CERTAIN TYPES OF INEQUALITIES

we noticed that the whole range in-between could be covered if we use on the right-hand
side functions h and g in a form

f (λx+m(1−λ )y)≤ h(λ ) f (x)g(x)+mh(1−λ ) f (y)g(y).

We named this convexity an (h,g;m)-convexity.
Here are several more varieties of convexity that will be generalized with this:

• A non-negative function f : I ⊂ R → R is called P-function if the inequality holds

f (λx+(1−λ )y) ≤ f (x)+ f (y)

for all x,y ∈ I and all λ ∈ [0,1].

• A function f : [0,∞) → [0,∞) is called s-convex in the second sense if the inequality
holds

f (λx+(1−λ )y) ≤ λ s f (x)+ (1−λ )s f (y)

for all x,y ∈ [0,∞) and all λ ∈ [0,1], where s ∈ (0,1].

• A non-negative function f : I ⊂ R → R is called Godunova-Levin function if the
inequality holds

f (λx+(1−λ )y) ≤ f (x)
λ

+
f (y)

1−λ
for all x,y ∈ I and all λ ∈ (0,1).

• A non-negative function f : I ⊂ R → R is called h-convex if the inequality holds

f (λx+(1−λ )y) ≤ h(λ ) f (x)+h(1−λ ) f (y)

for all x,y ∈ I and all λ ∈ (0,1), where h : J → R is a non-negative function, h �≡ 0,
(0,1) ⊆ J.

• A function f : [0,b]→ R is called m-convex if the inequality holds

f (λx+m(1−λ )y) ≤ λ f (x)+m(1−λ ) f (y)

for all x,y ∈ [0,b] and all λ ∈ [0,1], where m ∈ [0,1].

• A non-negative function f : [0,b] → R is called (h−m)-convex if the inequality
holds

f (λx+m(1−λ )y) ≤ h(λ ) f (x)+mh(1−λ ) f (y)

for all x,y ∈ [0,b] and all λ ∈ (0,1), where h : J → R is a non-negative function,
h �≡ 0, (0,1) ⊆ J and m ∈ [0,1].

• A non-negative function f : I ⊂ R → R is called (s,m)-Godunova-Levin function of
the second kind if the inequality holds

f (λx+m(1−λ )y) ≤ f (x)
λ s +

mf (y)
(1−λ )s

for all x,y ∈ I and all λ ∈ (0,1), where m ∈ (0,1], s ∈ [0,1].
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3.1 A CLASS OF (h,g;m)-CONVEX FUNCTIONS 69

• A function f : I ⊂ R → R is called exponential convex if the inequality holds

f (λx+(1−λ )y) ≤ λ
eαx f (x)+

1−λ
eαy f (y)

for all x,y ∈ I and all λ ∈ [0,1], where α ∈ R.

• A function f : I ⊂ R → R is called exponentially s-convex in the second sense if the
inequality holds

f (λx+(1−λ )y) ≤ λ s

eαx f (x)+
(1−λ )s

eαy f (y)

for all x,y ∈ I and all λ ∈ [0,1], where α ∈ R, s ∈ (0,1].

More detailed information may be found in [8, 10, 12, 15, 20, 23, 24, 27, 35, 36].
Furthermore, recall that a real valued function f on the interval I is said to be starshaped

if
f (λx) ≤ λ f (x)

whenever x ∈ I,λx ∈ I and λ ∈ [0,1].
This chapter is based on our results from [1], [2], [3], [6] and [7].

3.1 A class of (h,g;m)-convex functions

Definition 3.1 Let h be a nonnegative function on J ⊆ R, (0,1) ⊆ J, h �≡ 0 and let g be a
positive function on I ⊆ R. Furthermore, let m ∈ (0,1]. A function f : I → R is said to be
an (h,g;m)-convex function if it is nonnegative and if

f (λx+m(1−λ )y)≤ h(λ ) f (x)g(x)+mh(1−λ ) f (y)g(y) (3.3)

holds for all x,y ∈ I and all λ ∈ (0,1).
If (3.3) holds in the reversed sense, then f is said to be an (h,g;m)-concave function.

Remark 3.1 For different choices of functions h, g and parameter m in (3.3), we can
obtain corresponding convexity, e.g., if we set h(λ ) = λ s, s ∈ (0,1], g(x) = e−αx, α ∈ R,
then (h,g;m)-convexity reduces to exponentially (s,m)-convexity in the second sense (3.2).

Lemma 3.1 If f : I → [0,∞) is an (h,g;m)-convex function such that f (0) = 0, g(x) ≤ 1
and h(λ ) ≤ λ , then f is starshaped.

Proof. Let f be an (h,g;m)-convex function. Then we have

f (λx) = f (λx+m(1−λ )0)
≤ h(λ ) f (x)g(x)+mh(1−λ ) f (0)g(0)
≤ λ f (x).

Therefore, f is a starshaped. �
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70 3 (h,g;m)-CONVEX FUNCTIONS AND CERTAIN TYPES OF INEQUALITIES

Remark 3.2 Let g be a positive function such that g(x)≥ 1. If f is a nonnegative (h−m)-
convex function on [0,∞), then we have

f (λx+m(1−λ )y) ≤ h(λ ) f (x)+mh(1−λ ) f (y)
≤ h(λ ) f (x)g(x)+mh(1−λ ) f (y)g(y).

Hence, f is an (h,g;m)-convex function.
If additionally h(λ ) ≥ λ , then for nonnegative m-convex function f on [0,∞) we have

f (λx+m(1−λ )y) ≤ λ f (x)+m(1−λ ) f (y)
≤ h(λ ) f (x)+mh(1−λ ) f (y)
≤ h(λ ) f (x)g(x)+mh(1−λ ) f (y)g(y),

i.e., f is an (h,g;m)-convex function. An example of a function that satisfies h(λ ) ≥ λ is
h(λ ) = λ k, where k ≤ 1 and λ ∈ (0,1).

Similarly, if g(x) ≤ 1, then all nonnegative (h−m)-concave functions are (h,g;m)-
concave functions on [0,∞). Furthermore, if g(x) ≤ 1 and h(λ ) ≤ λ , then all nonnegative
m-concave functions are (h,g;m)-concave functions on [0,∞).

Proposition 3.1 Let h1,h2 be nonnegative functions on J ⊆ R, (0,1) ⊆ J, h1,h2 �≡ 0,
such that

h2(λ ) ≤ h1(λ ), λ ∈ (0,1).

Let g be a positive function on I ⊆R and m∈ (0,1]. If f : I → [0,∞) is an (h2,g;m)-convex
function, then f is (h1,g;m)-convex.

If f : I → [0,∞) is an (h1,g;m)-concave function, then f is (h2,g;m)-concave.

Proof. Let f be an (h2,g;m)-convex function. Then we have

f (λx+m(1−λ )y) ≤ h2(λ ) f (x)g(x)+mh2(1−λ ) f (y)g(y)
≤ h1(λ ) f (x)g(x)+mh1(1−λ ) f (y)g(y).

Hence, f is an (h1,g;m)-convex function.
If f is an (h1,g;m)-concave function, then analogously follows that f is (h2,g;m)-

concave. �

Proposition 3.2 Let h be a nonnegative function on J ⊆ R, (0,1) ⊆ J, h �≡ 0 and g be a
positive function on I ⊆ R. Furthermore, let m ∈ (0,1] and α > 0. If f1, f2 : I → [0,∞) are
(h,g;m)-convex functions, then f1 + f2 and α f1 are (h,g;m)-convex.

If f1, f2 : I → [0,∞) are (h,g;m)-concave functions, then f1 + f2 and α f1 are (h,g;m)-
concave.

Proof. Let f1, f2 be (h,g;m)-convex functions and α > 0. Then we have

f1(λx+m(1−λ )y)≤ h(λ ) f1(x)g(x)+mh(1−λ ) f1(y)g(y)
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3.1 A CLASS OF (h,g;m)-CONVEX FUNCTIONS 71

and
f2(λx+m(1−λ )y)≤ h(λ ) f2(x)g(x)+mh(1−λ ) f2(y)g(y).

Adding the above we obtain

[ f1 + f2] (λx+m(1−λ )y) ≤ h(λ ) [ f1 + f2] (x)g(x)+mh(1−λ ) [ f1 + f2] (y)g(y).

Furthermore,

[α f1] (λx+m(1−λ )y) ≤ αh(λ ) f1(x)g(x)+ αmh(1−λ ) f1(y)g(y)
= h(λ ) [α f1] (x)g(x)+mh(1−λ ) [α f1] (y)g(y).

We conclude that f1 + f2 and α f1 are (h1,g;m)-convex.
If f1, f2 : I → [0,∞) are (h,g;m)-concave functions, then analogously follows that f1 +

f2 and α f1 are (h,g;m)-concave. �

Proposition 3.3 Let h be a nonnegative function on J ⊆ R, (0,1) ⊆ J, h �≡ 0 and g be a
positive increasing function on I ⊆ R. Furthermore, let 0 < n < m ≤ 1. If f : I → [0,∞) is
an (h,g;m)-convex function such that f (0) = 0, g(x) ≤ 1 and h(λ )≤ λ , then f is (h,g;n)-
convex.

Proof. Let f be an (h,g;m)-convex function. From f (0) = 0, g(x) ≤ 1 and h(λ ) ≤ λ by
Lemma 3.1 follows f (λx) ≤ λ f (x). Considering also that g is an increasing function, we
obtain

f (λx+n(1−λ )y) = f
(

λx+m(1−λ )
( n

m
y
))

≤ h(λ ) f (x)g(x)+mh(1−λ ) f
( n

m
y
)
g
( n

m
y
)

≤ h(λ ) f (x)g(x)+mh(1−λ )
n
m

f (y)g(y),

which proves that f is (h,g;n)-convex. �

Proposition 3.4 Let h1,h2 be nonnegative functions on J ⊆ R, (0,1)⊆ J, h1,h2 �≡ 0 and
let

h(t) = max{h1(t),h2(t)}, t ∈ J.

Let g1,g2 be positive functions on I ⊆ R and let m1,m2 ∈ (0,1]. For i = 1,2, let fi : I →
[0,∞) be (hi,gi;mi)-convex functions. If the functions f1 g1 and f2 g2 are monotonic in the
same sense, i.e.

[ f1(x)g1(x)− f1(y)g1(y)] [ f2(x)g2(x)− f2(y)g2(y)] ≥ 0, x,y ∈ I,

and if c > 0 such that
h(λ )+mh(1−λ )≤ c, λ ∈ (0,1),

where m = max{m1,m2}, then f1 f2 is a (ch,g1g2;m)-convex function.
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72 3 (h,g;m)-CONVEX FUNCTIONS AND CERTAIN TYPES OF INEQUALITIES

Proof. Let fi : I → [0,∞) be (hi,gi;mi)-convex functions, i = 1,2. From hypotheses on
functions, for x,y ∈ I we have

f1(x)g1(x) f2(x)g2(x)+ f1(y)g1(y) f2(y)g2(y)
≥ f1(x)g1(x) f2(y)g2(y)+ f1(y)g1(y) f2(x)g2(x).

Let α and β > 0 be positive numbers such that α + β = 1. Then we have

f1 f2(αx+ βy)
≤ [h1(α) f1(x)g1(x)+m1h1(β ) f1(y)g1(y)]

×[h2(α) f2(x)g2(x)+m2h2(β ) f2(y)g2(y)]
≤ [h(α) f1(x)g1(x)+mh(β ) f1(y)g1(y)]

×[h(α) f2(x)g2(x)+mh(β ) f2(y)g2(y)]
= h2(α) f1(x)g1(x) f2(x)g2(x)+mh(α)h(β ) f1(x)g1(x) f2(y)g2(y)

+mh(α)h(β ) f1(y)g1(y) f2(x)g2(x)+m2h2(β ) f1(y)g1(y) f2(y)g2(y),

hence

f1 f2(αx+ βy)
≤ h2(α) f1(x)g1(x) f2(x)g2(x)+mh(α)h(β ) f1(x)g1(x) f2(x)g2(x)

+mh(α)h(β ) f1(y)g1(y) f2(y)g2(y)+m2h2(β ) f1(y)g1(y) f2(y)g2(y)
= [h(α)+mh(β )]

× [h(α) f1(x) f2(x)g1(x)g2(x)+mh(β ) f1(y) f2(y)g1(y)g2(y)]
≤ ch(α) f1(x) f2(x)g1(x)g2(x)+mch(β ) f1(y) f2(y)g1(y)g2(y).

This proves that f1 f2 is (ch,g1g2;m)-convex. �

Analogously follows the following proposition.

Proposition 3.5 Let h1,h2 be nonnegative functions on J ⊆ R, (0,1)⊆ J, h1,h2 �≡ 0 and
let

h(t) = min{h1(t),h2(t)}, t ∈ J.

Let g1,g2 be positive functions on I ⊆ R and let m1,m2 ∈ (0,1]. For i = 1,2, let fi : I →
[0,∞) be (hi,gi;mi)-concave functions. If the functions f1 g1 and f2 g2 are monotonic in
the opposite sense, i.e.

[ f1(x)g1(x)− f1(y)g1(y)] [ f2(x)g2(x)− f2(y)g2(y)] ≤ 0, x,y ∈ I,

and if c > 0 such that

h(λ )+mh(1−λ )≥ c, λ ∈ (0,1),

where m = min{m1,m2}, then f1 f2 is a (ch,g1g2;m)-concave function.
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3.2 H-H TYPE INEQUALITIES FOR (h,g;m)-CONVEX FUNCTIONS 73

3.2 Hermite-Hadamard type inequalities for
(h,g;m)-convex functions

The famous Hermite-Hadamard inequality gives us an estimate of the (integral) mean value
of a continuous convex function.

Theorem 3.1 (THE HERMITE-HADAMARD INEQUALITY) Let f : [a,b] → R be a con-
tinuous convex function. Then

f

(
a+b

2

)
≤ 1

b−a

∫ b

a
f (x)dx ≤ f (a)+ f (b)

2
.

Of course, equality holds in either side only for affine functions. In this section we
prove the Hermite-Hadamard inequality for (h,g;m)-convex functions and we point out
some special results. Furthermore, several known inequalities are improved.

Recall, by Lp[a,b], 1 ≤ p < ∞, the space of all Lebesgue measurable functions f for
which | f p| is Lebesgue integrable on [a,b] is denoted.

Theorem 3.2 Let f be a nonnegative (h,g;m)-convex function on [0,∞) where h is a
nonnegative function on J ⊆ R, (0,1) ⊆ J, h �≡ 0, g is a positive function on [0,∞) and
m ∈ (0,1]. If f ,g,h ∈ L1[a,b], where 0 ≤ a < b < ∞, then the following inequalities hold

f

(
a+b

2

)
≤ h
(

1
2

)
b−a

∫ b

a

[
f (x)g(x)+mf

( x
m

)
g
( x

m

)]
dx

≤ h
(

1
2

)
f (a)g(a)

b−a

∫ b

a
h

(
b− x
b−a

)
g(x)dx

+
mh
(1

2

)
f
(

b
m

)
g
(

b
m

)
b−a

∫ b

a
h

(
x−a
b−a

)
g(x)dx

+
mh
(

1
2

)
f
(

a
m

)
g
(

a
m

)
b−a

∫ b

a
h

(
b− x
b−a

)
g
( x

m

)
dx

+
m2h
( 1

2

)
f
(

b
m2

)
g
(

b
m2

)
b−a

∫ b

a
h

(
x−a
b−a

)
g
( x

m

)
dx. (3.4)

Proof. Let f be an (h,g;m)-convex function. Then for λ = 1
2 we have

f

(
x+my

2

)
≤ h

(
1
2

)
[ f (x)g(x)+mf (y)g(y)] .

Choosing y ≡ y
m we obtain

f

(
x+ y

2

)
≤ h

(
1
2

)[
f (x)g(x)+mf

( y
m

)
g
( y

m

)]
. (3.5)
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74 3 (h,g;m)-CONVEX FUNCTIONS AND CERTAIN TYPES OF INEQUALITIES

Let x = λa+(1−λ )b and y = (1−λ )a+ λb. Then

f

(
a+b

2

)
≤ h

(
1
2

)[
f (λa+(1−λ )b)g(λa+(1−λ )b)

+mf

(
(1−λ )

a
m

+ λ
b
m

)
g

(
(1−λ )

a
m

+ λ
b
m

)]
.

In the following step we will need to integrate the above over λ ∈ [0,1]. From

∫ 1

0
f (λa+(1−λ )b)g(λa+(1−λ )b)dλ =

1
b−a

∫ b

a
f (u)g(u)du

and

∫ 1

0
f

(
(1−λ )

a
m

+ λ
b
m

)
g

(
(1−λ )

a
m

+ λ
b
m

)
dλ =

1
b−a

∫ b

a
f
( u

m

)
g
( u

m

)
du

we obtain

f

(
a+b

2

)
≤ h
(1

2

)
b−a

∫ b

a

[
f (u)g(u)+mf

( u
m

)
g
( u

m

)]
du. (3.6)

By (h,g;m)-convexity of f we have

f (λa+(1−λ )b)≤ h(λ ) f (a)g(a)+mh(1−λ ) f

(
b
m

)
g

(
b
m

)
.

Multiplying the above inequality by g(λa+(1−λ )b) and integrating over λ ∈ [0,1] we
obtain

1
b−a

∫ b

a
f (u)g(u)du ≤ f (a)g(a)

∫ 1

0
h(λ )g(λa+(1−λ )b)dλ

+mf

(
b
m

)
g

(
b
m

)∫ 1

0
h(1−λ )g(λa+(1−λ)b)dλ

=
f (a)g(a)
b−a

∫ b

a
h

(
b−u
b−a

)
g(u)du

+
mf
(

b
m

)
g
(

b
m

)
b−a

∫ b

a
h

(
u−a
b−a

)
g(u)du. (3.7)

Again, by (h,g;m)-convexity of f we have

f

(
(1−λ )

a
m

+ λ
b
m

)
≤ h(1−λ ) f

( a
m

)
g
( a

m

)
+mh(λ ) f

(
b
m2

)
g

(
b
m2

)
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3.2 H-H TYPE INEQUALITIES FOR (h,g;m)-CONVEX FUNCTIONS 75

and if we multiply above inequality by g
(
(1−λ ) a

m + λ b
m

)
and integrate over λ ∈ [0,1] we

obtain

1
b−a

∫ b

a
f
( u

m

)
g
( u

m

)
du ≤ f

( a
m

)
g
( a

m

)∫ 1

0
h(1−λ )g

(
(1−λ )

a
m

+ λ
b
m

)
dλ

+mf

(
b
m2

)
g

(
b
m2

)∫ 1

0
h(λ )g

(
(1−λ )

a
m

+ λ
b
m

)
dλ

=
f
(

a
m

)
g
(

a
m

)
b−a

∫ b

a
h

(
b−u
b−a

)
g
( u

m

)
du

+
mf
(

b
m2

)
g
(

b
m2

)
b−a

∫ b

a
h

(
u−a
b−a

)
g
( u

m

)
du. (3.8)

Now from (3.6), (3.7) and (3.8) we obtain (3.4). �

In the sequel we state several corollaries, using special functions for h and/or g, and
choosing the parameter m. We start with the first special case: if g ≡ 1, then we have the
Hermite-Hadamard inequality for (h−m)-convex functions.

Corollary 3.1 Let f be a nonnegative (h−m)-convex function on [0,∞) where h is a
nonnegative function on J ⊆ R, (0,1) ⊆ J, h �≡ 0 and m ∈ (0,1]. If f ,h ∈ L1[a,b], where
0 ≤ a < b < ∞, then the following inequalities hold

f

(
a+b

2

)
≤ h
(

1
2

)
b−a

∫ b

a

[
f (x)+mf

( x
m

)]
dx

≤ h

(
1
2

)∫ 1

0
h(x)dx

[
f (a)+mf

(
b
m

)
+mf

( a
m

)
+m2 f

(
b
m2

)]
. (3.9)

Proof. We use

∫ b

a
h

(
b− x
b−a

)
dx =

∫ b

a
h

(
x−a
b−a

)
dx = (b−a)

∫ 1

0
h(u)du.

�

Remark 3.3 In [24, Theorem 9] authors gave the following Hermite-Hadamard type in-
equality for (h−m)-convex functions:

f

(
a+b

2

)
≤ h
( 1

2

)
b−a

∫ b

a

[
f (x)+mf

( x
m

)]
dx

≤ h

(
1
2

)[
f (a)+mf

(
b
m

)
+mf

( a
m

)
+m2 f

(
b
m2

)]
. (3.10)

For all functions h such that
∫ 1
0 h(x)dx ≤ 1, our result (3.9) will improve (3.10).

If g ≡ 1 and m = 1, then we have the Hermite-Hadamard inequality for h-convex func-
tions ([36]):
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76 3 (h,g;m)-CONVEX FUNCTIONS AND CERTAIN TYPES OF INEQUALITIES

Corollary 3.2 Let f be a nonnegative h-convex function on [0,∞) where h is a nonnega-
tive function on J ⊆ R, (0,1) ⊆ J, h �≡ 0. If f ,h ∈ L1[a,b], where 0 ≤ a < b < ∞, then the
following inequalities hold

1
2

f

(
a+b

2

)
≤ h
( 1

2

)
b−a

∫ b

a
f (x)dx

≤ h

(
1
2

)
[ f (a)+ f (b)]

∫ 1

0
h(x)dx. (3.11)

For h being identity and g ≡ 1, the Hermite-Hadamard type inequality for m-convex
functions holds ([11]):

Corollary 3.3 Let f be a nonnegative m-convex function on [0,∞) with m ∈ (0,1]. If
f ∈ L1[a,b], where 0 ≤ a < b < ∞, then the following inequalities hold

f

(
a+b

2

)
≤ 1

2(b−a)

∫ b

a

[
f (x)+mf

( x
m

)]
dx

≤ 1
4

[
f (a)+mf

(
b
m

)
+mf

( a
m

)
+m2 f

(
b
m2

)]
.

Of course, if h(x) = x, g≡ 1 and m = 1, then we have the Hermite-Hadamard inequality
given in Theorem 3.1.

An interesting Hermite-Hadamard type inequality follows if h is an identity.

Corollary 3.4 Suppose that assumptions of Theorem 3.2 hold and let h(x) = x. Then

f

(
a+b

2

)
≤ 1

2(b−a)

∫ b

a

[
f (x)g(x)+mf

( x
m

)
g
( x

m

)]
dx

≤ f (a)g(a)
2(b−a)2

∫ b

a
(b− x)g(x)dx

+
mf
(

b
m

)
g
(

b
m

)
2(b−a)2

∫ b

a
(x−a)g(x)dx

+
mf
(

a
m

)
g
(

a
m

)
2(b−a)2

∫ b

a
(b− x)g

( x
m

)
dx

+
m2 f
(

b
m2

)
g
(

b
m2

)
2(b−a)2

∫ b

a
(x−a)g

( x
m

)
dx. (3.12)

Next we use h(λ ) = λ s, s ∈ (0,1] and a special case of a positive function g(x) = e−αx,
α ∈ R, to obtain a following new Hermite-Hadamard inequality for exponentially (s,m)-
convex functions in the second sense.

Corollary 3.5 Let f be a nonnegative exponentially (s,m)-convex function in the second
sense on [0,∞) where s,m ∈ (0,1]. If f ∈ L1[a,b], where 0 ≤ a < b < ∞, then the following
inequalities hold

ele
men

t.h
r




