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Foreword

E
UCLIDEAN geometry can be thought of as the study of figures with
a rigid shape. Topology, also known as rubber sheet geometry,
studies the shape of objects up to continuous deformations that

can be continuously undone.

Writing a nontechnical book on topology is a difficult task. If, in addition,
the author intends to address teenagers, the difficulty increases.

The author’s experience with teaching this subject to teenagers is essential
for writing an attractive and challenging text. This is the case of Profes‑
sor Mohammad Sal Moslehian. Supported by his experience, not only in
university teaching, but also in training teachers, he offers us a textbook,
with quite advanced topics and many activities, that will certainly engage
students, and create an interest in new concepts.

The book contains many activities, nicely illustrated, and these will de‑
velop the natural tendency in teenagers to be explorers. For instance, in
one activity the reader is asked to use a marker to draw a circle, a triangle,
and a square on an uninflated balloon and then inflate the balloon. Then
the reader is asked to explain why the resulting shapes are topologically
equivalent to the original ones.

The book also contains many challenging topics: four‑dimensional spaces,
knot theory, and fractals, to mention a few. The formal study of these
topics requires many prerequisites. However, with his ample experience,
Professor Moslehian manages to communicate them without technicalities,
engaging the curious students in a pleasant ludic journey. The book will
appeal to anyone interested in geometry and can be regarded as a great
contribution to the popularization of mathematics.

Ton Marar
University of São Paulo, Brazil
February 2024
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Preface

T
HROUGHOUT the years, I have taught general topology to undergrad‑
uates in universities, gained experience teaching high school stu‑
dents, and conducted research in related areas of functional anal‑

ysis, specifically topological algebras. I believe that teenagers can grasp
the fundamentals of topology while studying geometry. It is worth not‑
ing that others have also shared this belief and presented arguments in its
favor.

Based on this conviction, I have been training high school teachers and
my Ph.D. students on this subject for two decades. Now, I am summa‑
rizing my findings and experiences in this book to assist high school and
university students in understanding complicated topological concepts.

Topology is typically introduced at higher education levels. However, due
to the visual essence of topology, it is feasible to teach high school students
some basic concepts and help them develop a deeper understanding of
these concepts through challenging yet intuitive examples and activities.

While this book is designed for self‑study and is a simplified approach to
basic topology by avoiding the Theorem‑Proof style, its most effective use
is in the hands of experienced teachers.

It is crucial to make topology fun and age‑appropriate in order to effec‑
tively engage students. To foster a deeper understanding of topology, it
is important to encourage students to explore and experiment with shapes
and objects. One way to do this is by providing them with play dough and
asking them to mold different shapes such as spheres, pyramids, cups, and
donuts. By manipulating these shapes, students can gain a better under‑
standing of topological concepts.

I would like to sincerely thank Professor Rahim Zaare‑Nahandi, Professor
Fateme Helen Ghane, Professor Majid Mirzavaziri, and Dr. Zohreh Vasagh
for their valuable feedback. I also appreciate Professor Ton Marar for gra‑
ciously writing a foreword for the book.
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Preface

I am grateful to Mr. Hossein Eslamimanesh for creating the figures in this
book using various software tools, to Ms. Mobina Gohari for utilizing an
AI‑based tool to generate the photo on the cover, and to my daughter, Dr.
Anahita Sal Moslehian for designing the cover of the book.

Finally, special thanks go to Professor Neven Elezović, from Element Pub‑
lishing House, for making this book freely accessible to everyone. I would
like to express my sincere appreciation to the editor of the book, Ms. San‑
dra Gračan, and the designer, Ms. Lejla Bužinkić for their exceptional ef‑
forts in creating such an elegant final product.

M. S. Moslehian
April 2024
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Introduction

W
E can transform a cup into a donut without cutting or gluing. How‑
ever, a cup and a tennis ball cannot undergo such a topological
transformation1 because it would cause the cup’s handle to break.

Topology, a branch of mathematics, aims to formalize and explore these
similarities and differences, extending them to abstract spaces. It investi‑
gates the properties of geometric entities that remain unchanged (invari‑
ant) under topological transformations, such as torsion, stretching, and
bending, while excluding actions like creating holes, gluing, tearing, and
self‑intersection. Topology seeks to define the concept of “closeness” with‑
out relying on the term “distance”.

The term “topology” is derived from the Greek words “topo” (place) and
“logy” (study). Gottfried Wilhelm Leibniz (1646–1716) was among the first
mathematicians to deal with ideas related to topology. Leonhard Euler
(1707–1783) can be credited with laying the foundation for topology
through his work on the problem of the “Seven Bridges of Königsberg”.
The first book on topology, titled “Preliminary Studies on Topology”, was
written by Johann Benedict Listing (1808–1882), who coined the term “topo‑
logy”. The distinct field of topology in mathematics is often traced back
to the publication of “Analysis Situs” by the French mathematician Henri
Poincaré (1854–1912) in 1895. Other significant contributors include Au‑
gust Ferdinand Möbius (1790–1868), Bernhard Riemann (1826–1866),
Camille Jordan (1838–1922), and Felix Hausdorff (1868–1942). Throughout
the 20th and 21st century, topology has continued to develop with contri‑
butions from mathematicians worldwide.

Topology is concerned with the qualitative properties of space that remain
unchanged in topological transformations, focusing on concepts such as
connectivity and compactness. In contrast, geometry focuses on the quan‑
titative aspects of space and deals with precise measurements such as dis‑
tance, length, area, volume, and angle.

1It is also known as continuous deformation which refers to a one‑to‑one correspon‑
dence that is continuous and its inverse is also continuous

ix
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Introduction

Teaching basic concepts of topology requires simple yet engaging exam‑
ples that provide a foundation for future mathematical concepts. The book
aims to increase accessibility by providing simple examples and visuals
that match students’ abilities and spark their interest in exploring complex
ideas.

Encouraging students to learn about topology can be challenging. How‑
ever, with the right approach, we can foster interest and curiosity in the
properties of shapes and spaces. As they progress in their education, they
can explore more advanced topological concepts.

This book is self‑contained, making it easy for teachers to instruct high
school and university students. The book meticulously presents the basic
concepts of topology and enhances students’ understanding of geometry.

In Chapter 1, we provide teachers with guidelines for teaching basic topol‑
ogy to students. They should remember that the key to engaging students
in topology is using age‑appropriate and varied teaching methods, as well
as making tangible connections to the real world in a supportive learning
environment. This approach can make the subject engaging and fun. This
chapter concludes with a variety of easy activities for beginners.

In Chapter 2, we focus on introducing learners to the basic concepts of set
theory in a clear and engaging manner.

In Chapter 3, we examine central concepts of topology such as curves,
neighborhoods, types of points, open and closed sets, boundedness, con‑
nectedness, and compactness, all explained in a user‑friendly way.

In Chapter 4, we explore the ideas of topological equivalence, topological
invariants, graphs, Euler characteristics, holes, and handles. In particular,
we use topological invariants to demonstrate that two shapes or bodies are
not topologically equivalent.

In Chapter 5, we introduce topics such as four‑dimensional space, knot
theory, and fractals. While these topics can be challenging for students,
they become engaging when presented in a way that ignites their curiosity
and desire to explore.

x
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Introduction

The book is enriched with captivating images and includes a variety of
activities designed to stimulate students’ thinking. The activities are cate‑
gorized as simple, moderate, and challenging, indicated by green, yellow,
and red boxes, respectively:

Activity 0.1

This is an simple activity.

Activity 0.2

This is a moderate activity.

Activity 0.3

This is a challenging activity.

Furthermore, the sections are specified as simple, moderate, or challenging
by the following symbols.

Figure 1. Simple
Topic

Figure 2. Moderate
Topic

Figure 3. Challenging
Topic

In addition, the book features readings that encourage readers to explore
complex topics. Moreover, a comprehensive list of references is provided,
which includes books and articles for further reading. The book itself,
along with the interesting book [12] and the papers [6, 18], serve as valu‑
able resources for developing mathematics lessons in modern pedagogy.
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1
Guidelines for Teachers

CHAPTER

Henri Poincaré

Henri Poincaré (April 29, 1854 – July 17, 1912), who
was a great Frenchmathematician, philosopher, and
Professor at the University of Paris, had a major in‑
fluence on topology. His work on analysis situs
(an old term for topology) introduced basic con‑
cepts such as homology and homotopy, which be‑
came central to the study of topological spaces. His
findings formed a basis for algebraic topology. His
contributions constitute a basis for the theory of dy‑
namical systems. Furthermore, Poincaré is known
for his elegant writing style. Source: https://en.
wikipedia.org/wiki/Henri_Poincaré

P
RESENTING a framework for teaching basic concepts of topology to
students is the main goal of this chapter. Developing a deep un‑
derstanding of topology is a process that requires time and pa‑

tience with teachers playing a crucial role.

1
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1 Guidelines for Teachers

1.1 Encouraging students
to learn topology

In this section, we offer innovative approaches to get students excited about
topology.

1. Reference to daily life: To begin, it is helpful to show students how

Figure 1.1. Topologically, a donut
and a mug are the same!

topology is connected to their every‑
day experiences. For example, you can
explain how a donut and a mug (cof‑
fee cup) share similar topological prop‑
erties because they both have a single
hole; see Figure 1.1. In addition, you
can demonstrate real‑life applications of
topology in everyday life. Also, talk
about how GPS systems utilize topol‑
ogy to find the shortest routes, or how
architects use topology in buildings de‑
signs. Other possible examples include
road maps and directions, the double
helix structure of DNA, and railroad
tracks and switches.

Figure 1.2. Note that the hole in the mug handle lines up with the donut hole. Just
as we don’t pour coffee into the mug handle, we shouldn’t pour it into
the donut hole! See also the cover.

2
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Encouraging students to learn topology 1.1

2. Topological transformations: Demonstrate simple topological transfor‑
mations, such as reshaping play dough to create different shapes, to
illustrate how shapes can change while maintaining their essential
topological properties.

3. Engaging visuals: Use colorful and engaging visuals to illustrate topo‑
logical concepts. Visual aids like diagrams, images, and videos, can
make abstract ideas more tangible and captivating. For example, vi‑
sual explanations of knots can help clarify complex concepts for stu‑
dents.

4. Puzzles and games: Introduce topology through puzzles and games.
Maze puzzles, knot puzzles, and games that involve connecting dots
or untangling knots can be both interesting and educational. Exam‑
ples include tangram puzzles, the Tetris video game (joining pieces),
jigsaw puzzles (connecting pieces to form a picture), dominoes, and
Rubik’s cubes.

5. Incorporate Technology: Use technology such as interactive simulations
and AI‑based tools to demonstrate and explore topological concepts.
Software can make learning more engaging for young people while
searching the internet opens up new worlds for individuals.

6. Encourage questions: Create a classroom environment where students
feel comfortable asking questions and expressing their curiosity. En‑
courage them to understand shapes, patterns, and topological trans‑
formations.

7. Introduce renowed mathematicians: Share stories of influential mathe‑
maticians who have made significant contributions to topology, such
as Leonhard Euler, Henri Poincaré, and August Möbius. Highlight
their achievements and show how they have advanced our compre‑
hension of shapes and spaces.

8. Field trips and guest speakers: Organize visits to science museums or
invite guest speakers who can share their passion for topology and
its practical applications.

3
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1 Guidelines for Teachers

9. Art and creativity: Inspire students to express their understanding of
topology through art and creativity. They can design their own topo‑
logical shapes or sculptures to display their interpretations of topol‑
ogy.

10. Group projects: Assign group projects such that students can explore
topological concepts together. For example, they can collaborate to
create paper models that highlight the similarities and differences be‑
tween a loop and a Möbius strip. Collaboration can stimulate creativ‑
ity and a deeper understanding of the topic.

11. Problem‑solving challenges: Present students with engaging problems
and challenges related to topology. Encourage them to think criti‑
cally and find creative solutions.

12. Contests and rewards: Organize topology‑related competitions within
the class or school. Rewarding students’ achievements, no matter
how small, and recognizing their enthusiasm can motivate them to
continue exploring the subject.

4
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Starting activities for teaching topological concepts 1.2

1.2 Starting activities for teaching
topological concepts

Teaching topology can be difficult because of its abstract nature. However,
using visual aids and hands‑on activities can make learning basic topology
more interesting and understandable for young learners. As they continue
to learn, they will hopefully be able to explore more complicated topologi‑
cal concepts. In the following activities, we present simple examples from
topology.

Activity 1.1

Find the shapes shown in Figure 1.3 and label each shape with the
corresponding number.

1. Line segment 2. Crossed line segments
3. Parallel line segments 4. Circle
5. Triangle 6. Rectangle
7. Square 8. Oval
9. Star 10. Diamond
11. Pentagon 12. Hexagon

Figure 1.3 Shapes

5
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1 Guidelines for Teachers

Activity 1.2

Sketch the capital letters “N, D, C, U, L, O, M, S” and determine
whether the end point is the same as the starting point.

A hole intuitively means that we can pull a string through it and poten‑
tially lift the object.

Activity 1.3

Determine which of the following objects have holes and which do
not.

1. Donut 2. Straw 3. Plate 4. Pretzel Bagel
5. Mug 6. Tennis Ball 7. Balloon 8. Button

Figure 1.4 Holes

6
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Starting activities for teaching topological concepts 1.2

Activity 1.4

Determine which of the following shapes and objects consist entirely
of a single piece:

1. Square 2. Alphabet letter ’i’
3. Tetris L‑piece 4. Maze paths
5. Ladder 6. Hopscotch layout for jumping
7. Wifi sign on cellphone 8. Spider web

Figure 1.5 Connectedness

7
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1 Guidelines for Teachers

Activity 1.5

In addition to the following examples, can you provide other exam‑
ples of knot handling?

1. Shoelaces tied in a knot 2. Tangled headphone cords
3. Tying a bow 4. Hair tied in a ponytail
5. Tying a ribbon on a gift 6. Knot in a scarf
7. Tied balloon string

Activity 1.6

Which of the following actions include only torsion, stretching, and
bending without creating holes, sticking, tearing, or self‑intersection?
In simpler terms, we are seeking actions that preserve the proximity
of points in a shape or object, meaning that they keep close points
close and distant points far from each other.

1. Turning a sock inside out
2. Folding a square napkin into a triangle
3. Cutting a pizza into two parts 4. Tearing a piece of bread
5. Inflating a balloon 6. Bending a knee
7. Drawing a rectangle on a tennis ball
8. Drawing a triangle on a balloon and then blowing it up

Activity 1.7

Form a small group with your friends and choose one or two projects
from the following list, depending on your preferences:

1. Creating a paper chain 2. Designing a treasure map
3. Constructing a 3D puzzle 4. Designing a cardboard house

8



“t” — 2024/4/11 — 8:47 — page 9 — #23

2
Intuitive Set Theory

CHAPTER

Georg Cantor

Georg Cantor (February 19, 1845 – January 6, 1918)
was a renowned German mathematician known for
his pioneering work in set theory. He introduced
the concept of infinite sets and devised a method for
comparing them. Despite facing resistance, he sig‑
nificantly developed our understanding of infinity
in mathematics. Cantor’s legacy includes the Can‑
tor set and the continuum hypothesis. His work laid
the foundation for modern mathematical logic and
axiomatic set theory. Source:
https://en.wikipedia.org/wiki/Georg_Cantor

I
NTRODUCING young people to the principles of set theory can be a
delightful and interactive endeavor. This chapter offers a straight‑
forward and playful approach to familiarizing students with the

elementary concepts of set theory.

9
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2 Intuitive Set Theory

2.1 Concept of a set

A collection of various objects (things) is called a set and each of these ob‑
jects is called an element of the set. Typically, these objects share a com‑
mon property. For example, this can include the collection of all numbers
less than 10 or the set of all planets in the solar system.

Activity 2.1

Think of different sets, such as a set of fruits in a store or a set of
shapes in geometry.

To represent a set, we place its elements inside curly brackets. The capital
letters A, B, · · · stand for sets. For example, the set of even numbers less
than 10 can be represented as A = {2, 4, 6, 8} . If an element a belongs
to a set A , we write a ∈ A ; otherwise, we write a /∈ A . For example,
2 ∈ {1, 2} , but 3 /∈ {1, 2} .

A Venn diagram is a visual represen‑
tation of sets. It facilitates problem‑
solving by using intersecting and non‑
intersecting circles (or other appropriate
shapes like squares) to illustrate rela‑
tionships between sets. To draw a Venn
diagram for a set, we place the elements
of the set inside a circle or a similar
shape. Any element that is not included
in the set is placed outside of this shape;
see Figure 2.1.

1
2

Figure 2.1. Venn diagram for {1, 2}

A set A is called a subset of a set B , denoted by A ⊆ B , if every element
of A belongs to B . Note that the subset ⊆ is a relation between sets, as
shown in Figure 2.2.

10
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Concept of a set 2.1

A

B

Figure 2.2 Subset relation

Two sets A and B are considered equal if both A ⊆ B and B ⊆ A , and
then we write A = B . This means that they have the same elements. For
instance, {1, 2} = {2, 1} . and {1, 1, 2} = {1, 2} , as shown in Figure 2.3.
Therefore, if a collection contains duplicate items, we remove the dupli‑
cates.

1

1 1

1

1
2

2

2

2
= =

Figure 2.3 Set equality

Activity 2.2

Which of the following relationships are
true for {1} in Figure 2.4?

1. 1 ∈ 1 2. 1 ⊆ 1

3. 1 ∈ {1} 4. 1 ⊆ {1}
5. {1} ∈ 1 6. {1} ⊆ 1

7. {1} ⊆ {1} 8. {1} ∈ {1}
9. {1, 1} = {1}

Figure 2.4. Venn diagram
for {1}

11
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2 Intuitive Set Theory

Activity 2.3

Which of the following relationships are
true for {1, {1}} and its subset {{1}} in
Figure 2.5?

1. {1} ∈ {{1}} 2. 1 ∈ {{1}}
3. 1 ⊆ {1, {1}} 4. {1} = {{1}}
5. {1} ∈ {{1}, 1} 6. {1} ⊆ {{1}, 1}

1

{1}

Figure 2.5. Venn diagram
for {1, {1}}

Counting the elements in a set allows us to determine the quantity of items
within it. Sets with different numbers of elements are distinct from one
another.

A set without any elements is called the empty set and is denoted by ∅
or { } , as shown in Figure 2.6, where there is no object inside the circle.

Figure 2.6 Empty set: ∅

2.2 Set operations

If two sets A and B are given, the set of objects that are contained in both
A and B is called the intersection of A and B and is denoted by A ∩ B .
The set of objects that are only in A , only in B , or in both is called the
union of A and B and is denoted by A ∪ B . Figure 2.7 illustrates the
intersection and the union of two sets A and B .

12
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Set operations 2.2

Figure 2.7 Intersection and union of two sets

Example 2.1

The intersection and union of two sets A and B in Figure 2.8 are
shown.

Figure 2.8 Intersection and union

13
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2 Intuitive Set Theory

Example 2.2

For three sets A , B , and C we
can consider pairwise intersec‑
tions as well as A ∩ B ∩ C , as
shown in Figure 2.9. A

C

B
A B∩

A C∩ B C∩

A B C∩ ∩

Figure 2.9. Intersection of three sets

Activity 2.4

Hatch the intersection and the union of the pairs of sets in Figure
2.10.

Figure 2.10 Intersection and union of sets

14
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Set operations 2.2

Activity 2.5

Introduce four sets such that the intersection of any two of them is
nonempty, but the intersection of all four is empty.

A set that includes all elements dealing with in a conversation is referred
to as the universal set. Consequently, all sets are subsets of this universal
set.

Let M be a universal set and A ⊆ M . The set of elements in M that do
not belong to A is known as the complement of A and is denoted by Ac ;
refer to Figure 2.11. For two sets A and B , A − B is defined as A ∩ Bc .
Therefore A − B is the set of all elements of A that do not belong to B .

Figure 2.11 Complement of a set

Activity 2.6

Hatch A − B with the color green and B − A with the color blue in
Figure 2.12.

A

A AB
B B

Figure 2.12 Subtraction of two sets

15
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2 Intuitive Set Theory

Activity 2.7

For given sets A , B , and C , hatch A ∩ B , B ∩ C , and C ∩ A in
Figure 2.13. Can you find A ∩ B ∩ C .

B

A

C

Figure 2.13 Intersection of three sets

Activity 2.8

For given sets A , B , and C , hatch A ∪ B , B ∪ C , and C ∪ A in
Figure 2.14. Can you find A ∪ B ∪ C .

B

A C

Figure 2.14 Union of three sets

If two sets A and B (which may not be distinct) are given, and we can
associate each element of A with only one element of B and vice versa,
then we say that there is a one‑to‑one correspondence between A and B ,
or that A and B are in a one‑to‑one correspondence.

16
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Set operations 2.2

Example 2.3

The sets A and B are in one‑to‑one correspondence for all items in
Figure 2.15:

A

A

A

B

10

100

1000

2

4

6

8

.

.

.

1

3

5

7

.

.

.

1

2

3

B

B

Figure 2.15 One‑to‑one correspondence between sets

Activity 2.9

Use Venn diagram and show
1. the two sets {♣,♡,♢,♠} and {⋆, π, 2024, 0} are in a one‑to‑one

correspondence;

2. the sets {1, 2, 3, 4, 5, . . .} and {. . . ,−2,−1, 0, 1, 2, . . .} are in a one‑
to‑one correspondence;

3. the set {1, 2, . . . , n} is not in correspondence with the set
{1, 2, 3, . . .} .

17
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2 Intuitive Set Theory

The numbers 1, 2, 3, . . . are called natural numbers. We denote the set of
all natural numbers by N = {1, 2, 3, . . .} . Any set in the form of {1, 2, . . . , n} ,
where n is a natural number is called a piece of natural numbers. There‑
fore, {1} and {1, 2, . . . , 100} are examples of pieces of natural numbers.

A set is said to be finite if it is empty or corresponds one‑to‑one to a piece
of natural numbers. Otherwise, the set is called infinite.

Given two numbers a and b with a < b , the set of all number x such
that a ≤ x ≤ b is called a closed interval and is denoted by [a, b] . The
interval (a, b) = {x : a < x < b} is called an open interval. These intervals
are all infinite.

Example 2.4

Here, we give examples of finite and infinite sets.

1. The set {♣,♡,♢} and the set of all states of USA are finite sets.

2. The set {2, 4, 6, . . .} and the set of all natural numbers having the
digit 0 are infinite.

Activity 2.10

Determine whether the following sets are finite or infinite.

1. {1
1 , 1

2 , 1
3 , . . .} 2. The set of animals on the earth

3. The set of kings of the UK 4. The set of all points on a circle
5. The set of edges of a triangular 6. The set of handles of a mug
7. The set of holes on a plate 8. The set of sands on the earth

Activity 2.11

Determine whether the following sets are finite or infinite.

1. The interval [0, 1] 2. The interval (0, 1)

18
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3
Points and Curves

CHAPTER

Felix Hausdorff

Felix Hausdorff (November 8, 1868 – January 26,
1942) was a German mathematician. He is known
for his essential contributions to topology and set
theory. He played a key role in developing the con‑
cepts of Hausdorff dimension and Hausdorff space.
The Hausdorff measure is an important notion in
geometric measure theory that laid the foundation
for modern topology. Hausdorff, who was Jew‑
ish, faced difficulties during the Nazi era, ultimately
leading him to take his own life to avoid being
sent to the Endenich camp. Source: https://en.
wikipedia.org/wiki/Felix_Hausdorff

I
N this chapter, we introduce fundamental concepts of topology, in‑
cluding curves, neighborhoods, types of points, open and closed
sets, boundedness, connectedness, and compactness, all in a sim‑

ple‑to‑understand way. A common joke among mathematicians is that a
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3 Points and Curves

topologist is someone who can’t tell the difference between a mug and a
donut: Pour coffee into a donut and eat a mug.

A region refers to a set of points in
the plane, which is a two‑dimensio‑
nal space (see the Section “Four‑di‑
mensional space” for notions of the
usual two‑dimensional and three‑di‑
mensional spaces).

A body means a set of points in
our three‑dimensional space. Con‑
sequently, a region can also be re‑
garded as a body, as shown in Figure
3.1.

Figure 3.1. A region in the usual
three‑dimensional space

3.1 Curve

A tiny dot ‘ · ’ is used in mathematics
as a visual representation of a point,
which indicates an exact position in the
plane or space. It has no size or dimen‑
sions such as length, width, or height.

A

Figure 3.2 Point A

To highlight a point, we often represent it as the intersection of two small
lines, symbolized as X. We usually designate points with capital letters; see
Figure 3.2.

A curve is a path that connects one point (the starting point) to another (the
end point) without interruption. When you draw a curve with a pencil,
the curve should be created without lifting the pencil off the paper and
continuing to draw from another point. A real model of a curve is the
path we take through a forest from our hut to a river to catch fish. Another
example is a map showing overland roads in a country or even a treasure
map.

A curve, as a set in the plane, can also be considered a region.
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Curve 3.1

Curves can take the form of either a straight line or a curved line.

Example 3.1

1. Figure 3.3 (i) illustrates two points both of which are on a curve.

2. Figure 3.3 (ii) shows two points none of which are on a curve.

3. Figure 3.3 (iii) presents two points one of which is on a curve and
the other is not.

(i) (ii) (iii)

Figure 3.3 Two points and a curve

Activity 3.1

In Figure 3.4, three points are given. Draw
1. a curve through them;

2. a curve such that a point is on the curve and the other two points
are not;

3. a curve such that none of the points are on the curve.

Figure 3.4 3 points

Activity 3.2

Find a maze on the internet and try to solve it.
21
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3 Points and Curves

3.2 Closed and open curves

A closed curve is a curve in which the start and end points coincide. Oth‑
erwise, it is said to be an open curve; see Figure 3.5. It becomes apparent
that a curve can intersect itself at more than one point.

A curve that does not intersect itself (in other words, is non‑self‑intersecting)
is known as a simple curve.

A curve can be directed by arrows from its starting point to its end point.
For example, curves (a) and (d) in Figure 3.5 are simple.

Closed Curves Open Curves

(a) (b) (c) (d)

Figure 3.5 Closed and open curves

Activity 3.3

1. Is a triangle a simple open curve?

2. Draw a closed curve and an open curve that intersect each other.

3. Draw two closed curves that intersects each other.

The interior of a closed curve is the area fully encircled by the curve, while
the exterior of a closed curve refers to the region beyond the curve, as
shown in Figure 3.6.

22
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Closed and open curves 3.2

Figure 3.6. Interior and exterior of
a closed curve

Figure 3.7 Jordan theorem

An interesting result, known as the Jordan curve theorem, which goes back
to Camille Jordan (1838–1922), states that every simple closed curve on a
plane divides the plane into two distinct regions: an inner and an outer
region. Moreover, any curve connecting a point in the interior to a point
in the exterior necessarily intersects the curve at some point, as depicted
in Figure 3.7.

A simple closed curve is called oriented clockwise when we walk on it
through its direction, we have its interior on the right side, otherwise, we
say that the curve is oriented counterclockwise. For example, curve (a) in
Figure 3.5 is oriented clockwise.

Activity 3.4

1. Draw a simple closed curve oriented clockwise inside a given cir‑
cle.

2. Draw a simple closed curve oriented counterclockwise outside a
given circle.

23
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3 Points and Curves

Activity 3.5

The points A, B, C, D, E, F, G, M, N , and P are given in Figure 3.8.
Draw
1. an open curve such that the point A is on the curve;

2. an open curve such that the point A is not on the curve;

3. an open curve through both B and C ;

4. a simple closed curve oriented counterclockwise through both D
and E ;

5. a closed curve such that the point G is on the curve;

6. a simple closed curve such that the point G is in its interior;

7. a closed curve such that the point G is in its exterior;

8. a closed curve featuring the point M in its interior, the point N
on the curve, and the point P in its exterior.

A

D
E

M

N

P

GB

C

Figure 3.8 Points and drawing curves
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Closed and open curves 3.2

Activity 3.6

In Figure 3.9, hatch
1. the interior of the curve with the color red;

2. the exterior of the curve with the color yellow.

Figure 3.9 Interior and exterior of a curve

Activity 3.7

Figure 3.10. illustrate a closed curve, a point A located in its interior,
and a point B situated in its exterior. Draw a curve starting from
the point A and ending at the point B . Check to see if this curve
intersects the given curve.

B

A

Figure 3.10 Illustrating the Jordan curve theorem
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3 Points and Curves

3.3 Interior, exterior, and boundary
of regions

A neighborhood of a point refers to the interior of a closed curve that
surrounds the point. It is important to note that the points on the curve
are not considered part of the neighborhood. To clarify this fact, we draw
the corresponding curve in the form of a dashed line in the presentation
of a neighborhood. It is worth noting that the point itself is included in
each of its neighborhoods; see Figure 3.11.

Figure 3.11 Three neighborhoods of three points

Activity 3.8

The points A, B, C , and D are given in Figure 3.12. Draw
1. two arbitrary neighborhoods for A and B ;

2. two neighborhoods for C and D such that do not intersect.

Figure 3.12 Drawing neighborhoods of given points
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Interior, exterior, and boundary of regions 3.3

A point is said to be an interior point of a region if there exists a neighbor‑
hood that is entirely contained in the region as illustrated in Figure 3.13.
An interior point is a part of the region itself. The interior of a region
consists of all its interior points.

Figure 3.13 Interior points for yellow regions

A point is called an exterior point of a region if there exists a neighborhood
that is entirely outside of the region, as shown in Figure 3.14. An exterior
point of a region is not any part of the region itself. The exterior of a region
consists of all its exterior points.

Figure 3.14 Exterior points for yellow regions

A point is considered a topological boundary point, or simply a boundary
point, of a region if it is neither an interior point nor an exterior point,
as shown in Figure 3.15. Therefore, a point is a boundary point if every
neighborhood of the point intersects both the region and its complement.
A boundary point of a region may belong to the region or not. The bound‑
ary of a region consists of all its boundary points.

Figure 3.15 Boundary points for yellow regions
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3 Points and Curves

Activity 3.9

Find an interior point, an exterior point, and a boundary point for
each of the blue regions in Figure 3.16.

Figure 3.16 Finding specific points

Activity 3.10

Consider the yellow regions in Figure 3.17.
1. Hatch the interior of each of the regions with the color blue.

2. Hatch the exterior of each of the regions with the color green.

3. Color the boundary of each of the regions with the color red.

Figure 3.17 Hatching specific sets
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Open and closed regions 3.4

3.4 Open and closed regions

A region is called open if it does not contain any boundary points, or in
other words, if all its points are interior. It is clear that the plane itself is
open. The empty set is also considered open because it does not contain
any points.

Activity 3.11

Figure 3.18 illustrates various open regions highlighted in blue. To
determine whether each blue region is open, choose any point within
the region and draw a neighborhood around it.

Figure 3.18 Open regions
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3 Points and Curves

Activity 3.12

Figure 3.19 shows regions that are not open. To demonstrate this,
show that there is no neighborhood around the given point that is
completely contained in the red region.

Figure 3.19 Nonopen regions

Activity 3.13

The interior and exterior of a region are always open. Verify this for
the orange‑colored region in Figure 3.20.

Figure 3.20 Interior and the exterior of a region

A region is called closed when it consists of all its boundary points. It is
noteworthy that a set that is not closed (or open) is not necessarily open
(or closed).
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Open and closed regions 3.4

Activity 3.14

Figure 3.21 illustrates several closed regions. Demonstrate that these
regions contain their boundaries, which are drawn in a darker color.

Figure 3.21 Closed regions

Activity 3.15

Figure 3.22 shows some regions (colored in gray, green and red) that
are not closed. To demonstrate this, establish that for each region the
given point is a boundary point but does not belong to the region.

Figure 3.22 Nonclosed regions
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3 Points and Curves

It is notable that some regions can be neither closed nor open; see Figure
3.23.

closed open neither closed
nor open

Figure 3.23 A region can be neither open nor closed

The union of any arbitrary number of open regions is open and the inter‑
section of any arbitrary number of closed regions is closed.

For a finite number of open sets, their intersection is also open and the
union of a finite number of closed sets is also closed; Figure 3.24 illustrates
these facts for two sets.

Figure 3.24 Intersection and union of specific regions
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Open and closed regions 3.4

Activity 3.16

Which regions in Figure 3.25 are closed, which are open and which
are neither closed nor open?

Figure 3.25 Types of regions

Activity 3.17

Provide an example of infinitely many open regions such that their
intersection is not open as well as an example of infinitely many
closed regions such that their union is not closed.

The set of all open sets in the plane is called the Euclidean topology on the
plane. The plane equipped with this topology is said to be the Euclidean
two‑dimensional space; For more information, consult Chapter 5 of the
book.
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3 Points and Curves

3.5 Separation axioms

The separation of points by neighbor‑
hoods can be achieved in different
ways. In Figure 3.26 we separate two
points A and B by using two neigh‑
borhoods that do not intersect each
other. When it can be done for each
two distinct points, we refer to it as the
Hausdorff property. Figure 3.26 Separating two points

Activity 3.18

The points A, B, C, D, E, F, G , and H are given in Figure 3.27. Draw
1. two neighborhoods, one for G and one for H , such that point

G is outside the neighborhood of H and point H is outside the
neighborhood of G ;

2. two neighborhoods, one for each of C and D, such that the neigh‑
borhoods intersect;

3. two neighborhoods, one for each of E and F , such that only the
boundaries of neighborhoods intersect;

4. two neighborhoods, one for each of G and H , such that the
neighborhoods do not intersect.

Figure 3.27 Separating points by neighborhoods
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Bounded regions 3.6

3.6 Bounded regions

A region in a plane that lies inside a circle is called bounded; Figure 3.28.

Figure 3.28 Bounded regions

A region is called unbounded if it is not bounded.

Figure 3.29 Unbounded regions

Activity 3.19

1. Draw a bounded region in the plane.

2. Draw an unbounded region in the plane.
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3 Points and Curves

3.7 Connectedness

Connectedness refers to being “all one piece”. More precisely, a region is
called connected if it is not a disjoint union of two open (or two closed)
regions. All shapes in Figure 3.30 are connected.

Figure 3.30 Connectedness

A region that is not connected, is called disconnected. All shapes in Figure
3.31 are disconnected.

Figure 3.31 Disconnected regions

Activity 3.20

Draw
1. a disconnected region;

2. a connected region.
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Connectedness 3.7

Activity 3.21

Which shapes in Figure 3.32 are connected and which ones are dis‑
connected?

1 2 3 4

Figure 3.32 Distinguishing connected regions

A connected set within a region is called a connected component if it is
not contained in any larger connected region. A region may have several
connected components. It is evident that a connected region only has one
connected component; see Figure 3.33.

Figure 3.33 Connected components

Activity 3.22

In the plane, draw
1. a region with only one connected component;

2. a region with only two connected components.
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3 Points and Curves

3.8 Compactness

A region in the plane is compact if it is both bounded and closed1. All
regions in Figure 3.34 are compact. A region that is not compact is referred
to as noncompact.

Figure 3.34 Compactness

Activity 3.23

Draw 1. a compact region; 2. a noncompact region.

Activity 3.24

Which regions in Figure 3.35, colored in blue, pink, and green, are
compact and why?

Figure 3.35 Compactness

1Alternatively, a set is compact if, for any collection of open sets whose union contains
the entire set, there exists a finite number of those open sets whose union also contains the
entire set
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Euclidean three-dimensional space 3.9

3.9 Euclidean three-dimensional space

In the plane, as shown in Figure 3.11, we
can represent a neighborhood as the inte‑
rior of a circle. Clearly, the interior of a
circle serves as a neighborhood for each of
its points.

A ball refers to the set of all points on and
inside a sphere; see Figure 3.36.

Figure 3.36 Ball

In our three‑dimensional space, a neighborhood of a point is defined as
the set of all points inside a ball that includes the point itself. Therefore, a
point can have many neighborhoods.

The concepts of open, closed, and boundary points of a body can be de‑
fined similarly to those in the plane. Accordingly, a body is open if all of
its points are interior points. In other words, for every point of the body,
we can find a neighborhood (inside a ball) that is entirely contained within
the body. The space itself and the empty set are open. On the other hand,
a body is closed if its complement (the points outside the body) is open.
Also, a body is bounded if it can be enclosed within a ball; see Figure 3.37.

Figure 3.37 Compactness
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3 Points and Curves

Otherwise, it is called unbounded; see Figure 3.38.

Figure 3.38 Compactness

Similarly, a body is considered connected if it consists of a single piece,
and it is said to be compact when it is both bounded and closed.

The set of all open sets in the usual three‑dimensional space is called the
Euclidean topology on the space. The space equipped with this topology is
said to be the Euclidean three‑dimensional space. The abstract definition
of topology is provided in the last chapter.

Activity 3.25

1. Introduce some compact bodies around yourself.

2. Introduce some connected bodies around yourself.

3. Introduce some noncompact bodies around yourself.

4. Introduce some disconnected bodies around yourself.
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4
Topological Equivalence

and Topological Invariants

CHAPTER

Leonhard Euler

Leonhard Euler (April 15, 1707 – September 18,
1783) was a Swiss mathematician and physicist. He
is regarded as the greatestmathematician of the 18th
century and his influence on mathematics remains
unchanged. He made novel contributions to vari‑
ous branches of mathematics such as graph theory,
number theory, mathematical analysis, and topol‑
ogy. One of his most elegant achievements is the
Euler identity eiπ = −1 . Despite losing his sight
later in life, he continued to produce an astonishing
amount of work. Source: https://en.wikipedia.
org/wiki/Leonhard_Euler

T
HIS chapter is devoted to the study of topological equivalence, topo‑
logical invariants, graphs, and Euler characteristics. We also dis‑
cuss the concepts of holes and handles. It is worth mentioning

that topological invariants are employed to demonstrate that two shapes
or bodies are not topologically equivalent.
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4 Topological Equivalence and Topological Invariants

4.1 Topological equivalence

Two mathematical entities are considered to be topologically equivalent
if they can be transformed into each other without the need to cut or glue.
This transformation can involve distortion, stretching, bending, twisting,
and shrinking, while avoiding actions such as creating holes, gluing, tear‑
ing, and self‑intersection. This type of transformation is known as a topo‑
logical transformation or homeomorphism. In other words, under a topo‑
logical transformation, points that are initially close to each other remain
close to each other throughout the transformation. They preserve the com‑
pactness and connectedness of the entities. In addition, they do not re‑
move any boundaries or add any new ones.

Example 4.1

We can topologically transform a cube to a ball; Figure 4.1.

Figure 4.1 Cube and ball

Example 4.2

A donut and a cup have different shapes but share one hole. How‑
ever, they are equivalent since they can be transformed into each
other without cutting or gluing if they are made of clay, as shown in
Figure 4.2.
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Topological equivalence 4.1

Figure 4.2 Donut and cup

A donut and a plate are not equivalent because a donut has a hole,
while a plate does not; see Figure 4.3.

Figure 4.3 Donut and plate
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4 Topological Equivalence and Topological Invariants

Example 4.3

A square and a triangle are equivalent; see Figure 4.4.

Figure 4.4 Square and triangle are equivalent

Activity 4.1

Demonstrate how a rubber band (Figure 4.5) can be stretched and
changed in shape while maintaining its connectedness.

Figure 4.5 Rubber band
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Topological equivalence 4.1

Activity 4.2

Take a piece of string with two ends tied together (see Figure 4.6).
Lay it on the floor and form a triangle. Then make a rectangle and fi‑
nally a circle. Explain that triangles, rectangles, and circles are (topo‑
logically) equivalent.

Figure 4.6 Piece of string band

Activity 4.3

Use a marker to draw a circle, a triangle, and a square on an unin‑
flated balloon and then inflate the balloon. Explain why the resulting
shapes are equivalent to the original shapes; Figure 4.7.

Figure 4.7 Shapes on a balloon
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4 Topological Equivalence and Topological Invariants

4.2 Topological invariants

A topological invariant is a characteristic of a topological space that re‑
mains unchanged when it is subjected to a (topological) equivalence. In
other words, a topological invariant characterizes the shape or structure
of a topological space, regardless of any transformations it may undergo.
To establish that two spaces are not (topologically) equivalent, it is suffi‑
cient to find a topological invariant that one space possesses and the other
does not.

We can immediately observe that neither the “size of objects” nor the “num‑
ber of corners” are topological invariants. To see this, consider the two
shapes shown in Figure 4.8. The two shapes are equivalent despite the
circle being larger and having no corners compared to the square’s four
corners.

Figure 4.8 Circle and square are equivalent

The most common topological invariants are connectedness and compact‑
ness.

In what follows, we explore some other significant topological invariants.
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Component number 4.3

4.3 Component number

The component number of a shape in the plane refers to the number of its
connected components. This is a topological invariant. If two shapes have
different component numbers, then they are not (topologically) equivalent.

Activity 4.4

Use the component numbers to show that the shapes “i” and “u” are
not (topologically) equivalent.

Activity 4.5

Use the component numbers to show that the shapes in Figure 4.9
are not (topologically) equivalent.

Figure 4.9 Component numbers
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4 Topological Equivalence and Topological Invariants

4.4 Disconnecting points of curves

A disconnecting point for a curve in the plane is a point that, when re‑
moved, changes the component number of the curve. The number of dis‑
connecting points is a topological invariant.

In Figure 4.10, point A is a disconnecting point of the curve, but point B
is not.

Figure 4.10 Disconnecting point

The curves in Figure 4.11 are not (topologically) equivalent because they
have different numbers of disconnecting points.

Figure 4.11 Curves with different disconnecting points
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Disconnecting points of curves 4.4

A disconnecting point is said to have
the index of disconnecting point n
when removing it changes the com‑
ponent number of the curve to n .
The index of a disconnecting point is
a topological invariant.
In Figure 4.12, point E has the in‑
dex 3 while the index of disconnect‑
ing point F is 2 . Figure 4.12. Index of disconnecting

point

Activity 4.6

Use index of disconnecting points to show that the curves in Figure
4.13 are not (topologically) equivalent.

Figure 4.13 Application of disconnecting points

Activity 4.7

Use Figure 4.14 and explain why none of the letters X, Y, and Z are
topologically equivalent.

Figure 4.14 Letters X, Y, and Z
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4 Topological Equivalence and Topological Invariants

Activity 4.8

Use index of disconnecting points to show that the curves in Figure
4.15 are not (topologically) equivalent.

Figure 4.15 Curves having different index of disconnecting point

4.5 Genus number

Intuitively, a surface is a connected shape that locally looks like a distorted
portion of a plane 1. Sometimes, it is considered as the boundary of a body
in our three‑dimensional space. For example, a sphere (the boundary of
a ball) is a surface. The torus, the geometric shape of a donut, is also a
surface. It can be constructed from a rectangle as follows:

First, bend a rectangle in one direction and connect the opposite sides to
form a cylinder. Then, bend the cylinder so that its ends are joined; see
Figure 4.16.

1More precisely, each of its points has a ‘small neighborhood’ that topologically equiv‑
alent to the interior of a disk
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Genus number 4.5

Figure 4.16 Constructing a torus

A hole in a mathematical entity refers to a part of it that makes it impos‑
sible to continuously shrink the entity to a single point.2

The genus number of a surface S represents the number of holes it has
and is denoted by Γ(S) . In Figure 4.17, two shapes with different genus
numbers are shown.

A sphere has a genus number of 0 while a torus has a genus number of
1 . Moreover, a mug, which has a handle, also has the genus number 1 .
This is why it is often said that “A topologist cannot distinguish between
a mug and a donut”.

Genus number: 1 Genus number: 3 

Figure 4.17 Genus number

2For a rigorous definition of a hole, we need tools such as algebraic topology, specifically,
homotopy and homology.
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4 Topological Equivalence and Topological Invariants

Activity 4.9

Employ the genus numbers to show that the shapes in Figure 4.18
are not (topologically) equivalent.

Genus number: 0 Genus number: 2

Figure 4.18 Shapes having different genus numbers

Activity 4.10

Determine the genus number of each shape presented in Figure 4.19.

Brick

Glass Ring

Fork

Figure 4.19 Genus numbers of shapes
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4.6 Winding number

The number of turns of a closed curve in the plane with respect to a cer‑
tain point is an integer, which is called winding number. In other words,
this number indicates how many times the curve encircles the point. It
is positive if the curve circles the point counterclockwise, otherwise, we
represent it by a negative number.

To determine the winding num‑
ber of a point P shown in Fig‑
ure 4.20, we draw a ray from
P to any point P′ on the curve
(red line segment PP′ in the
figure). If we move P′ along
the curve, the red ray PP′ (or
the point colored green) rotates
around P . Then the number of
times the ray PP′ (or the point
colored green) goes around P
is the winding number of P .

In figure 4.20, the winding
number of the point P is 3 .
The winding number for Q is
−1 (since the red ray rotates
clockwise), and for the point R ,
it is 0 . Curves that have differ‑
ent winding numbers with re‑
spect to the same point are not
considered equivalent.

Figure 4.20 Winding number

53



“t” — 2024/4/11 — 8:47 — page 54 — #68

4 Topological Equivalence and Topological Invariants

Activity 4.11

Determine the winding numbers of the closed curve in Figure 4.21
with respect to the points shown.

Figure 4.21 Finding winding numbers of A, B, C , and D

Activity 4.12

Can you imagine a closed curve in the plane and a point whose
winding number is greater than any number, that is, it is “infinity”?

4.7 Graph theory

The Seven Bridges of Königsberg refers to a historical problem in mathe‑
matics, posed by Leonhard Euler in 1735. The problem involves determin‑
ing whether it is possible to traverse all seven bridges of Königsberg (a city
in Russia) exactly once and return to the starting point without retracing
any bridge; see Figure 4.22.
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Figure 4.22. Seven Bridges of Königsberg – Source:
https://mathshistory.st-andrews.ac.uk/Extras/Konigsberg/

Euler established that such a walk is impossible; Figure 4.23.

Figure 4.23 Seven Bridges of Königsberg

Euler’s groundbreaking work laid the foundation for graph theory and
marked a significant development in mathematics. His approach to the
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Seven Bridges problem demonstrated the power of abstract thinking and
paved the way for the study of networks and connectivity in graph the‑
ory. This field has applications in various disciplines, including computer
science and telecommunications.

A (finite) graph consists of points, called vertices, and the curves connect‑
ing them, are called edges. Each edge connects exactly two vertices, and
the edges should not cross or intersect unless at a vertex. A square can
be considered a graph with 4 vertices and four edges, while a triangle is a
graph with three vertices and three edges. These shapes are topologically
equivalent even though they do not have the same graph structures.

The edges collectively determine the boundaries of specific regions known
as faces. By a face, we mean a region between the edges that does not
include any edges within it. The outer region is regarded as a face as well.
If two faces share common boundary points, they can only share either an
edge or a vertex. A triangle graph is a graph whose faces are enclosed
by three edges. Graphs can be drawn on various surfaces such as a plane,
a sphere, or a torus. In a graph, V represents the number of vertices, E
stands for the number of edges and F denotes the number of faces.

Activity 4.13

Determine the value of V − E + F for the graph shown in Figure
4.24.

Figure 4.24 Quantity V − E + F

A planar graph is a type of graph in which its vertices and edges can be
drawn on a plane.
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A connected graph is a graph where every two vertices are linked.

If the set of vertices is finite, the graph is said to be finite.

A map is a finite, connected and planar graph. Euler’s formula for maps,
which is V − E + F = 2 , can be computed.

Two questions arise here:

1. Can we draw a map where each of the three houses A , B , and C is
connected to all three utilities: water, electricity, and gas?
The answer is no because when we apply Euler’s formula with V = 6
and E = 9 , we get F = 5 , which is not possible. This nonplanar graph
is denoted by G∗ .

2. Can we draw a map with five vertices?
Again, the answer is no because if we apply Euler’s formula with V = 5
and E = 10 , we get F = 7 , which is not possible. This nonplanar graph
is denoted by G∗ .

Kuratowski’s theorem states that a graph G is nonplanar if and only if G
contains G∗ or G∗ as a part (subgraph); see Figure 4.25.

Figure 4.25 Kuratowski’s Theorem

A vertex of a graph is said to have a degree of n if n edges meet at that
point. This degree is a topological invariant in the sense that if one graph,
as a shape, has m points each with a degree of n , and the other does not,
then the graphs are not (topologically) equivalent.
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In Figure 4.26, the point C has a degree of 5 , but the degree of D is 3 .

Figure 4.26 Degree of a vertex in a graph

Activity 4.14

Use the degree to show that the shapes in Figure 4.27 are not (topo‑
logically) equivalent.

Figure 4.27 Use the degree of vertices

4.8 Möbius strip

Consider a strip of paper measuring, say, 3 cm× 20 cm. If you fold it by
bringing the two short edges together and attaching them with glue or
tape, you get a loop. Bringing the two short edges together and rotating
one of them 180 degrees before sticking it to the other creates a Möbius
strip; see Figure 4.28.
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Figure 4.28 Loop and Möbius strip

The Möbius strip is a special type of surface that seems to have two sides,
but actually only has one side. If you run your finger along one side, you
will end up on the other side without lifting your finger. It’s like a never‑
ending movement!

A nonorientable surface is a surface on which traveling along some simple
closed curves in a clockwise direction and returning to the starting point
results in a change of direction to counterclockwise. Otherwise, it is said
to be an orientable surface.

To better understand, imagine yourself standing at a point on a large Möbi‑
us strip made of glass. On the strip, right beneath your feet, you have
written the sentence “I am walking”. Begin walking on the surface. When
you return to the starting point, you will observe that you are facing the
opposite direction and your writing appears as a mirror image; see Figure
4.29. In this case, we say that the surface is non‑directional. Surfaces that
include a Möbius strip as part of themselves are indeed nonorientable. The
remaining surfaces are orientable.

Figure 4.29 Möbius strip is nonorientable
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For example, the sphere and torus are orientable while the Möbius strip is
not.

Activity 4.15

1. Cut a ring exactly in the middle with scissors. What happens?

2. Cut a Möbius strip in the middle. What happens? Again, cut the
resulting strip in the middle with scissors and describe what you
get; see Figure 4.30. What happens if you cut it once more?

Figure 4.30 Cutting a loop and a Möbius strip

3. Repeat these experiments by making cuts in the ring and the
Möbius strip, each with a width of 3 cm, but this time at a dis‑
tance of one centimeter from the edge.

A point is considered a non‑m‑boundary point of a surface if every simple
closed curve including the point can be contracted to it. Otherwise, it is
called an m‑boundary point3.

Figure 4.31 m‑boundary of a surface

The set of all m‑boundary points
of a surface is referred to as the
m‑boundary of the surface. To il‑
lustrate this notion, let us consider
the surface of a hemisphere in our
space as an example, as shown in
Figure 4.31.

3m‑boundary refers to manifold boundary. Manifolds are spaces that are locally similar
to Euclidean spaces
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Some surfaces such as the sphere and the torus do not have an m‑boundary.
Other surfaces such as a disk (the set of points inside and on a circle) and
the Möbius strip have an m‑boundary.

A closed surface is one that is compact and does not have any m‑boundary
points. Examples of closed surfaces include the sphere and the torus. Ex‑
amples of surfaces that are not closed are the Möbius strip and a cylinder.

Activity 4.16

Consider a soccer ball (Figure 4.32) with hexagonal shapes.

Figure 4.32 Soccer ball Figure 4.33 Disk Figure 4.34. Cylinder

1. Make a hole in the soccer ball by removing one of the hexagonal
shapes.

2. Show that the punctured soccer ball in step 1. can be stretched
into a disk. Thus, a sphere with a hole is (topologically) equiva‑
lent to a disk (Figure 4.33).

3. Explore how a soccer ball with two holes is (topologically) equiv‑
alent to a cylinder (Figure 4.34).
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4.9 Grandfather Paradox

Do you believe it is possible to travel back in time and influence future
events? Possibilities are the essence of science. Let’s tell an interesting
story related to the so‑called grandfather paradox 4:

Imagine you traveled back in time to your grandfather’s birthday, let’s say
in 1950, and unintentionally killed him at the time of his birth. Since your
grandfather died, he could not marry your grandmother, so your mother
could not be born in 1980, and consequently, you could not be born in
2010. This creates a paradox where you wouldn’t have to go back to 1950
to kill your grandfather. Therefore, your grandfather is alive, your mother
is born and you are born as well, as shown in Figure 4.35. 5

Figure 4.35 The grandfather paradox

One solution is to represent time not on a flat strip, but on a Möbius strip
(a twisted loop with only one side). This allows you to move through both
“sides” without interruption, as with a loop.

4A paradox is a statement that is self‑contradictory or contradicts what one would nor‑
mally expect.

5https://www.youtube.com/watch?v=XO1PwyFffBk&t=8s
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By plotting the timeline on a Möbius strip, we may avoid the paradox, as
shown in Figure 4.36.

Imagine traveling back in time along the Möbius strip and accidentally
causing the death of your grandfather on his birthday in 1950. As you
travel forward in time, you reach 1980, when your mother could not have
been born. Moving forward to 2010, you find yourself in a time when you
also could not exist.

By traveling forward along the Möbius strip, once you reach the “back”
of the point on the strip corresponding to the day your grandfather was
killed, he can be born. If you continue moving, the special properties of
the Möbius strip will take you back to your mother’s birthdays and finally
to your own.

In this way, we can change events, have contradictory events and return
to the beginning time without any problems. By plotting the timeline on a
Möbius strip, we can indeed avoid the paradox, as shown in Figure 4.36.

Figure 4.36 Möbius strip and the grandfather paradox

This method is for solving a journey into the past. A journey into the
past is only possible if we can change events in the past that do not affect
other events in the present and future (relative to this past). Whether it is
feasible or not is a question that time itself may one day answer.6

6https://www.youtube.com/watch?v=JmvHNatZgVI
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4.10 Euler characteristic

In this section, we explore Euler’s formula for surfaces.

A surface is called triangularizable if it can be covered by a finite triangle
graph. For example, a sphere is triangularizable because we can triangu‑
late it by drawing the equator and a finite number of longitudes, as shown
in Figure 4.37.

Figure 4.37 Triangularizability of the sphere

A torus is a triangularizable surface. The entire plane is not a triangulariz‑
able surface because one cannot triangularize it by a finite triangle graph.

The Euler characteristic of a triangularizable surface S is given by χ(S) =
V − E + F , where V is the number of vertices, E is the number of edges
and F is the number of faces of any covering finite triangle graph. The
Euler characteristic remains unchanged regardless of the specific finite tri‑
angle graph used. It is a topological invariant. Therefore, in some cases,
we can calculate the Euler characteristic of a surface such as a sphere or a
torus by considering a topological transformation of the surface, such as a
polyhedron; see Figure 4.38.
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Figure 4.38 Euler characteristic of torus

Recall that a polyhedron is a three‑dimensional geometric shape made up
of flat surfaces (also known as faces) that are polygons. These polygons are
connected along their straight edges, and the edges meet at points called
vertices. Cubes and pyramids are some examples of polyhedra.

Any Platonic body has an Euler characteristic of 2 , as discovered by Leon‑
hard Euler in 1758; Figure 4.39.

Lorem Ipsum

Hexahedron
(Cube)

Dodecahedron

Octahedron

Icosahedron

Tetrahedron

Figure 4.39 Euler characteristic of Platonic bodies
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Activity 4.17

Verify Euler’s formula (V − E + F = 2 ) for a cube and a pyramid by
counting the vertices, edges, and faces in Figure 4.40.

Figure 4.40 Verify Euler’s formula for cube and pyramid

Other polyhedra may have different Euler characteristics, as shown in Fig‑
ure 4.41.

Figure 4.41 Tetrahemihexahedron has 6 vertices, 12 edges, and 7 faces.
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The Euler characteristic of a polygon that does not intersect itself, as a
surface, is 2 ; see Figure 4.42.

Figure 4.42 The Euler characteristic of a polygon

The Euler characteristic is 2 for a sphere, 0 for a torus, and −1 for a
Möbius strip.

Activity 4.18

Find the Euler characteristic of the surface shown in Figure 4.43.

Figure 4.43 Cube with a hole

Activity 4.19

The art gallery problem seeks to determine the minimum number of
guards required to monitor the entire gallery. Can you identify any
connections between this problem and triangularization?
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4.11 Holes and handles

The concept of a hole in a mathematical entity refers to a topological fea‑
ture that prevents the entity from smoothly contracting to a single point.
A classic example is the ‘donut‑like hole’ located in the center of a torus,
or a mug with some holes; see Figure 4.44.7

Figure 4.44 A cup with three holes!

A torus with a hole has an Euler characteristic of −1 and is called a han‑
dle.

When two surfaces have ‘equivalent’ m‑boundaries, connecting them8 cre‑
ates a new surface with an Euler characteristic equal to the sum of the Eu‑
ler characteristics of the original surfaces. If we make q holes on a sphere,
the resulting surface has an Euler characteristic of 2 − q . If we glue han‑
dles to exactly p holes, then the resulting surface has an Euler character‑
istic of 2 − q − p . In particular, if p = q , the resulting surface is denoted
by Sp . It is evident that a sphere can be denoted as S0 ; see Figure 4.45.

7https://www.youtube.com/watch?v=k8Rxep2Mkp8
8known as the connected sum
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Figure 4.45 A sphere with two holes and two handles

If a sphere has q holes and we glue some Möbius strips onto p of those
holes, then the resulting surface has an Euler characteristic of 2 − q . In
particular, if p = q , then the resulting surface is denoted by Np . The
surface N1 is called the real projective plane. It is a nonorientable surface
that is not topologically equivalent to any body in the Euclidean three‑
dimensional space.

Activity 4.20

Try to attach a circle to the m‑boundary of a Möbius strip!

More precisely, let S be a closed surface. Attaching a handle to S involves
removing two open disks (the set of points inside a circle) from S , and
then identifying their boundaries. Gluing a Möbius strip to S involves
removing an open disk from S and then identifying opposite points on
its boundary (circle).

An interesting result of Möbius and Jordan states that every closed surface
is (topologically) equivalent to exactly one surface of type S0 (orientable),
Sp (orientable), or Np (nonorientable).

Furthermore, the Euler characteristic and orientability of a surface can be
used to classify closed surfaces. In other words, surfaces with the same
Euler characteristic and orientability are (topologically) equivalent.
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Now, we can define the genus number accurately: The genus number of a
closed surface S is Γ(S) = p if it is topologically equivalent to Sp (p ≥ 0)
or Np (p ≥ 1) . We point out that the relationship between the Euler char‑
acteristics and the genus number for an orientable triangularizable surface
S is χ(S) = 2 − 2Γ(S) and for a nonorientable triangularizable surface it
is χ(S) = 2 − Γ(S) ; see [13, page 30].

If we glue two Möbius strips along their m‑boundaries we arrive at the
Klein bottle; see Figure 4.46. The Klein bottle has no m‑boundary and is
a non‑orientable surface. If we place an ant on it, the ant can move inside
and outside without hitting any borders. Despite its name, no liquid can
be kept inside the Klein bottle. We can represent a Möbius strip in three‑
dimensional space while the Klein bottle can only be represented (without
self‑intersections) in a four‑dimensional space.

Figure 4.46 Klein bottle Figure 4.47 Klein bottle

Activity 4.21

Discuss how the Klein bottle differs from ordinary three‑dimensional
objects.

The Klein bottle has Euler characteristic 0 and is therefore (topologically)
equivalent to N2 , as shown in Figure 4.47.

A well‑known result, attributed to Hassler Whitney, states that all surfaces
can be represented in a four‑dimensional space (see Section 5.1) .
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CHAPTER

August Ferdinand Möbius

August Ferdinand Möbius (November 17, 1790 –
September 26, 1868) was a German mathematician
and astronomer. He was a professor at the Uni‑
versity of Leipzig and played a key role in promot‑
ing mathematical research in the 19th century. The
Möbius strip, which is a non‑orientable surface with
only one side, carries his name. Möbiusmade signif‑
icant contributions to geometry, particularly in the
study of projective geometry. Möbius, togetherwith
Cayley and Grassmann, was among the first to con‑
sider the possibility of geometry in more than three
dimensions. Source: https://en.wikipedia.org/
wiki/August_Ferdinand_M�bius

T
HE topics presented in this chapter may be challenging for high
school and first‑year university students. The level of difficulty
should be adjusted to students’ abilities and presented in a way

that sparks curiosity and a sence of joy in discovery.
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5.1 Four-dimensional space

Teaching students the concept of four‑dimensional space can be challeng‑
ing because our everyday experience is limited to three dimensions. How‑
ever, one can use simple and creative analogies to help them grasp the
basic idea.

A line is one‑dimensional, while regions are considered two‑dimensional
and bodies are regarded as three‑dimensional. But what is the fourth di‑
mension?

Some people argue that time is the fourth dimension, as Einstein’s the‑
ory of relativity incorporates a four‑dimensional geometry. Time can be
seen as a fourth dimension that allows movement between past and fu‑
ture moments. However, from a topological perspective, there exists a
four‑dimensional space.

Therefore, we question the significance as we progress through the list
of geometric dimensions. In the dimension of 2 , we encounter common
shapes like circles and squares. These shapes then transform into spheres
and cubes in three dimensions. Can we extend the argument and discuss
hyperspheres or hypercubes (also known as Tesseracts)?

We can reach a cube from one point in three stages:

In the first step, we connect two points that are one centimeter apart to
form a line segment, which is a one‑dimensional shape. This is because
a small entity, such as a particle, can only move along the forward and
backward directions on the line segment.

In the second step, we connect each pair of endpoints of two one‑centimeter‑
long line segments that are parallel and one centimeter apart to form a
square, which is a two‑dimensional shape. An ant can only move hori‑
zontally and vertically or in combinations thereof, on this square.
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In the third step, we connect the corresponding corners of two squares that
are parallel to each other. For example, the second square is one centime‑
ter in front of the first square. This forms a three‑dimensional cube. A
human can move in three directions: the aforementioned movements on a
flat surface, as well as up and down or combinations of these directions.

Thus, a hypercube can be constructed by joining two three‑dimensional
cubes that are adjacent to each other by one centimeter, as shown in Figure
5.1.

Figure 5.1 Four‑dimensional cube

The issue is that we must change direction for each step, moving per‑
pendicular to the previous directions. However, we have already utilized
all available directions with horizontal, vertical, upward, and downward
movements. As three‑dimensional beings, we are unable to transition into
the fourth dimension. Our only option is to envision it, ensuring our imag‑
ination remains logical and coherent.

Of course, from a physical standpoint, this hypercube is purely imaginary.
When we inquire about the number of vertices a hypercube could have,
we are essentially asking how many vertices it would possess if it actually
existed. This is similar to the classic humorous question: “If you had a
brother, would he like kingfish?” The distinction is that inquiring about
a non‑existent brother is foolish, whereas inquiring about the vertices of a
non‑existent cube is not foolish because it has a definitive answer.

If a four‑dimensional hypercube were to exist, we could uncover many
of its properties. We could determine the number of vertices, edges, and
faces it possesses. Since the hypercube is constructed by joining two three‑
dimensional cubes with 8 vertices each, it must have a total of 16 vertices.
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In addition to the edges that the two cubes already have, it would also
have new edges connecting each pair of vertices, resulting in a total of 32
edges. With some contemplation, it becomes evident that the hypercube
would have 24 square faces and 8 cubic hyperfaces.

The following table illustrates the number of “parts” in a line segment, a
square, a cube, and a hypercube. This finding demonstrates that the total
of these parts is always a power of three.

Object Dimension Vertices Edges Faces Hyperfaces Hypercube

Point 0 1 0 0 0 0

Line Segment 1 2 1 0 0 0

Square 2 4 4 1 0 0

Cube 3 8 12 6 1 0

Hypercube 4 16 32 24 8 1

Table 5.1 n ‑dimensional cubes ( 0 ≤ n ≤ 4 )

We can think of a line segment as the projection of a square onto a line,
which is one‑dimensional. Similarly, a square can be seen as the projec‑
tion of a cube onto a plane, which is two‑dimensional (see Figure 5.2).
Therefore, we can imagine a three‑dimensional cube as the projection of a
hypercube onto the three‑dimensional space.

Figure 5.2 Projecting a hypercube

74



“t” — 2024/4/11 — 8:47 — page 75 — #89

Four-dimensional space 5.1

Activity 5.1

A sphere (ball, respectively) is a surface (body, respectively) in three‑
dimensional space.
1. What is its projection onto the two‑dimensional plane?

2. Can you describe a hypersphere and hyperball in four‑dimensio‑
nal space?

To understand the concept of four‑
dimensional space, we need to ap‑
proach it from a different perspec‑
tive. In a two‑dimensional space,
certain shapes, like the wings of
a butterfly, cannot be coincided
through transitions and rotations
on a flat surface. To properly co‑
incide these shapes, we must move
them in three‑dimensional space
(see Figure 5.3).

Figure 5.3 Wings of a butterfly

Likewise, in the three‑dimensional space that surrounds us, we cannot
overlap the left hand with the right hand. To achieve this, we should
transfer them from three‑dimensional space into four‑dimensional space
(see Figure 5.4).

Figure 5.4 Our hands cannot be matched

In this four‑dimensional world, we can easily put on a left glove with our
right hand; see Figure 5.5.

75



“t” — 2024/4/11 — 8:47 — page 76 — #90

5 Challenging Topics of Topology

Figure 5.5 A glove Figure 5.6 Trapped inside a sphere

Furthermore, if we were trapped in a sphere, we could escape by moving
into four‑dimensional space.

In 1978, mathematician Thomas Banchoff and computer scientist Charles
Strauss at Brown University created computer‑generated animations of a
hypercube moving inside and outside of our three‑dimensional space.

To understand their work, imagine a two‑dimensional creature living on
the surface of a swimming pool. This creature can only see objects on the
surface and is physically limited to two dimensions, just like us in our
three‑dimensional world. It can only perceive three‑dimensional objects
through two‑dimensional cross‑sections. For example, when a cube passes
through the water, the two‑dimensional creature sees the cross‑sections
created by the cube cutting through the surface as it enters, passes through,
and exits. This idea goes back to the novella “Flatland” by Edwin Abbott
and brings to mind the 1980s maze game Pac‑Man.

As the cube moves across the surface at different angles and directions, the
two‑dimensional creature gradually gathers enough information to under‑
stand the cube. However, it cannot leave its two‑dimensional world.

Strauss and Banchoff’s animations illustrate what we would observe if a
hypercube moved through our three‑dimensional space at various angles.
We see intricate shapes of vertices and edges. Describing these shapes
mathematically is one thing, but seeing them in motion is a different and
interesting experience.
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Consequently, we can gain the ability to comprehend four‑dimensional
space. In recent decades, there have been significant advancements in vi‑
sually representing four‑dimensional space, and computer science contin‑
ues to make progress in this area.

5.2 Knot theory

Knots have numerous applications in everyday life, so let’s explore their
properties. One of the simplest knots is the trefoil knot. To create this
knot, we first form a simple loop in a rope and then connect its two ends.

Knots have a rich historical significance
dating back to ancient times. According
to legend, Gordius, the king of Phrygia,
tied an extremely complicated knot that
became known as a formidable chal‑
lenge almost impossible to untangle;
see Figure 5.7. Over the years, many
tried to untie it, and when Alexander
the Great was faced with the task, he
was told that whoever could untie the
knot would be the ruler of Asia, as lo‑
cal legend dictated. Instead of patiently
trying to untangle the rope, Alexander
cut it with his sword! Figure 5.7 Gordian knot

Although a knot is an abstract concept, its influences can be observed in
various real‑life cases. Textile art often draws inspiration from knot the‑
ory, and knot patterns are frequently used in jewelry design. Understand‑
ing knot theory can also provide insights into the structure and behav‑
ior of DNA molecules. This opens up new possibilities for utilizing DNA
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to create small structures for medical purposes or for storing information.
In addition, knot theory can find applications in the study of robotic arm
movements and the planning of their trajectories; see Figure 5.8. 1

Figure 5.8 Knots

A knot is the result of a smooth transition of a circle into the Euclidean
three‑dimensional space. More precisely, a knot originates from a one‑
dimensional line segment that is arbitrarily rotated around itself and its
two unconnected ends finally join to form a closed loop. It is not topo‑
logically possible to continuously convert a knot to a circle. However, we
can cut a knot at a point, untie the knot, and finally glue the two points
obtained from cutting, to form a circle.

Two knots are said to be identical (knot‑equivalent) if one knot can be
transformed into the other without intersecting or passing through itself.
The catalog of non‑identical knots exceeds six billion.

The unknot (also known as the trivial knot) is a closed loop of rope with‑
out a tied knot, as shown in Figure 5.9.

The trefoil knot is recognized as the most basic non‑trivial knot; see Figure
5.10.

1https://www.youtube.com/watch?v=KmhGWCvxKF8
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Figure 5.9 Unknot Figure 5.10 Trefoil knot

If we project a knot onto a plane, we obtain a curve with transverse self‑
intersections called crossing points. Such a curve is called a knot diagram,
in which we distinguish between an overstrand and its substrand at each
crossing point. In Figure 5.11, we can see such projections of a knot on
three surfaces.

Figure 5.11 Knot diagrams of trefoil

A knot invariant is a mathematical quantity or property associated with a
mathematical knot that does not change under certain transformations of
the knot, such as stretching, bending, or twisting, without cutting or glu‑
ing. In other words, it is a characteristic of the knot that remains constant
regardless of the specific diagram of the knot. Knot invariants are tools
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that allow us to prove that two knots are not identical.2

Around 1930, Reidemeister introduced three types of moves: (i) Twist move,
(ii) Poke move, and (iii) Slide move, as shown in Figure 5.12.

(i) Twist move (ii) Poke move (iii) Slide move

Figure 5.12 Reidemeister moves

These movements, known as Reidemeister moves, can be used to distin‑
guish whether a knot is different from another. Reidemeister proved that
two knots are identical if their diagrams can be changed into each other
through a finite number of Reidemeister moves. Figure 5.13 illustrates how
two knots, K1 and K2 , are identical.

Figure 5.13 Identical knots by Reidemeister moves

2https://www.youtube.com/watch?v=8DBhTXM_Br4
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Activity 5.2

Use a rope to create the Chefalo Knot, as shown in Figure 5.14. Then
demonstrate that it is the unknot.

Figure 5.14 Chefalo knot

The crossing number of a knot is the minimum number of crossing points
in any knot diagram that represents the knot. This number is a knot in‑
variant. For example, the unknot and the infinite‑like knot are identical.
Their knot diagrams are shown in Figure 5.15. The left curve has no cross‑
ing points and the right curve has one crossing point. Thus, the minimum
number of crossing points is 0 , and therefore the unknot has a crossing
number of 0 .

Figure 5.15 Crossing number of unknot is 0

Figure 5.16 shows that there is only one knot (trefoil knot) with a cross‑
ing number of 3 , one knot (figure‑eight knot) with a crossing number of
4 , two knots with a crossing number of 5 , and three knots with a cross‑
ing number of 6 . In the symbol nk shown in Figure 5.16, the number n
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stands for the crossing number and k represents the position of this knot
in the list.

01 31 41 51

52 61 62 63

Figure 5.16 Types of knots

We present a simple method for drawing a knot diagram for any given
crossing number n 3.

(i) Start by placing n points on the plane as crossings, as shown in the
top left figure at 5.17 and assign numbers from 1 to n to each of
these points. The number j corresponds to the j th point, which is
crossed for the first time.

(ii) Begin drawing the knot from starting point 1 (from the over‑strand)
and continue in sequential order until reaching crossing n . Lines
should not intersect each other.

(iii) After passing through crossing n , proceed to complete the knot by
moving to crossing n− 2 and then to crossing 1 in sequential order.

(iv) Once crossing 1 is completed, pass through either crossing n or n−
1 (depending on whether n is even or odd) and then through the
remaining point ( n − 1 or n ), ensuring to pass over one point and
under the other.

(v) Finally, close the knot by tying the starting point 1 .

3Thismethodwas presented byMohammadAli Gholizadeh in a class project supervised
by the author
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1
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Figure 5.17 Drawing a knot with 6 crossings

When drawing the knot, make sure not to pass through a crossing twice
immediately or pass two consecutive crossings in the same manner. In
other words, pass over one and under the other. All crossings must be
passed both over and under.

83



“t” — 2024/4/11 — 8:47 — page 84 — #98

5 Challenging Topics of Topology

An interesting question that can be posed is, “How can we draw all the
various knot diagrams of the crossing number n ?”

Tricolorability is a knot invariant. A knot is called tricolorable if each
strand of the knot diagram can be colored with one of three colors such as
red, blue, and green, subject to two rules:

(i) at least two colors must be used,

(ii) at each crossing, the three incident strands are either all the same
color or all different colors.

For example, the trefoil knot is tricolorable (Figure 5.18), but the figure‑
eight knot is not (Figure 5.19). If a knot is not tricolorable, we say that it is
nontricolorable. The unknot is nontricolorable; see Figure 5.20. If a knot
is tricolorable, then it is of course not identical to the unknot.4 5

Figure 5.18 Tricolorability oftrefoil knot

Figure 5.19 Non‑tricolorability offigure‑eight knot

4https://www.youtube.com/watch?v=fwcvmo0y_SI
5https://www.youtube.com/watch?v=EBWP1POPc2A
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Figure 5.20 Nontricolorability of unknot

Activity 5.3

Take a shoelace, as shown in Figure 5.21, and tie it in different ways
to create various knots. Explain how different knots represent topo‑
logical differences.

Figure 5.21 Shoelace
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Activity 5.4

1. Draw a knot diagram for the granny knot illustrated in Figure
5.22.

Figure 5.22 Knot diagram of granny knot

2. Use its knot diagram in Figure 5.23 to show that it is tricolorable.

Figure 5.23 Tricolorability of granny knot
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Activity 5.5

1. Draw a knot diagram for the square knot illustrated in Figure
5.24.

Figure 5.24 Knot diagram of square knot

2. Use its knot diagram in Figure 5.25 to show that it is tricolorable.

Figure 5.25 Tricolorability of square knot
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5.3 Fractal

A fractal is a geometric shape that dis‑
plays self‑similarity (endless repetitions),
complexity, and detail at all levels of
magnification. This means that when
we observe a small section of the shape
through a microscope, the resulting im‑
age resembles the original shape. Frac‑
tals can be found in nature such as coast‑
lines, clouds, and trees.

Figure 5.26 Fractal
Figure 5.26 presents a fractal6.

1. The Cantor set, introduced by Georg Cantor, is a fundamental fractal.
The construction of this fractal involves an iterative process of remov‑
ing intervals from a line segment as follows (see Figure 5.27):

• Start with the closed interval [0, 1] .

• Remove the open interval (1/3, 2/3) , resulting in two closed in‑
tervals: [0, 1/3] and [2/3, 1] .

• Repeat this process for each remaining closed interval. In other
words, remove the open middle third of each interval. After the
first iteration, we will have four intervals. After the second itera‑
tion, we will have eight intervals, and so on.

• After an infinite number of iterations, the Cantor set is constructed
as the set of points that remain. These points are precisely the ones
that were never removed during any step of the construction.

6https://drmrehorst.blogspot.com/2018/10/fractal-hand.html
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Figure 5.27 Cantor set

Remarkably, the total sum of the lengths of the removed intervals is 1 .
This set has no interior point and is a disconnected subset of the real
line.

Let us recall that a point, a line segment, a square, and a cube are zero‑,
one‑, two‑, and three‑dimensional, respectively.

We define a set X to have topological dimension 0 if for every point in
X there exist small neighborhoods whose boundaries do not intersect
X ; see Figure 5.28. Such a set behaves like a set of isolated points.

Figure 5.28 A set of topological dimension 0

Activity 5.6

Verify that the Cantor set has topological dimension 0 .
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2. The Koch snowflake curve is created by dividing a straight line into
thirds, replacing the middle third with an equilateral triangle, and ap‑
plying this construction iteratively to each resulting line segment as
seen in Figure 5.29.

Figure 5.29 Koch snowflake curve

3. The Sierpiński triangle (Figure 5.30) is formed by iteratively dividing
an equilateral triangle into smaller equilateral triangles and removing
the central triangle. This process repeated an infinite number of times,
as shown in Figure 5.31.
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Figure 5.30 Sierpiński triangle

Figure 5.31 Sierpiński triangle

4. The Alexander horn sphere (Figure 5.32) can be constructed using a
standard torus by following these steps:

• Begin by cutting out a radial
section from the torus.

• Insert a punctured torus on
each exposed side of the cut
intricately attaching them to
the torus on the other side.

• Repeat steps 1 and 2 in‑
definitely for the two newly
added tori.

This topological entity was discov‑
ered by James Waddell Alexander
II (1888–1971).

Figure 5.32 Alexander horned sphere

91



“t” — 2024/4/11 — 8:47 — page 92 — #106

5 Challenging Topics of Topology

5.4 Abstract topology

In this section, we present an abstract definition of topology and introduce
the concept of a topological space. This definition is inspired by Euclidean
topologies and is based on the properties of open sets.

Topology

A topology T on a set X is a set consisting of subsets of X such
that

(i) ∅ ∈ T and X ∈ T ;

(ii) The intersection of a finite number of elements of T is a
member of T . In other words, if F1, F2, . . . , Fn ∈ T , then
F1 ∩ F2 ∩ · · · ∩ Fn ∈ T .

(iii) The union of an arbitrary number of elements of T is a mem‑
ber of T .

When X is equipped with T , it is referred to as a topological space.

Example 5.1

One can easily verify that

(1) For any set X , {∅, X} is a topology on X , known as the in‑
descrete topology.

(2) For any set X , the set of all subsets of X is a topology on X ,
named the discrete topology.

(3) {∅, {a}, {a, b}} is a topology on the set {a, b} ; see Figure 5.33.
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Figure 5.33 {∅, {a}, {a, b}}

(4) T1 = {{a}, {b}, {a, b}} is not a topology on {a, b} , as ∅ /∈ T1 ;
see Figure 5.34.

Figure 5.34 T1 = {{a}, {b}, {a, b}}

(4) T2 = {∅, {a}, {b}, {c}{a, b, c}} is not a topology on {a, b, c} ,
since {a} ∪ {b} = {a, b} /∈ T2 ; see Figure 5.35.

Figure 5.35 T2 = {∅, {a}, {b}, {c}, {a, b, c}}
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Activity 5.7

Is {∅, {b}, {a, b}} a topology on the set {a, b} ?

Activity 5.8

Is {∅, {1}, {2}} a topology on the set {1, 2} ?

Activity 5.9

Is {∅, {10}, {100}, {10, 100}, {10, 100, 1000} a topology on the set
{10, 100, 1000} ?

Activity 5.10

Find all topologies on the set X = {a, b, c, d} . Can you determine
the number of topologies on a set with n elements?

The set of all open sets in the Euclidean topology on the plane or in the
space forms a topology, as open sets satisfy all conditions in Definition 5.4.
This motivates us to refer to the elements of T as open sets. It is natural
that the complements of open sets are called closed sets. If P ∈ X and
G ∈ T such that p ∈ G , then G is called a neighborhood of P . Thus,
all notions defined in Chapter 3 can be recovered in the general setting of
topological spaces.

An interesting question is whether we can define the Euclidean topology
on the line as a one‑dimensional space. The answer is yes. To see this, let
us consider the line segments without the endpoints on the line. The set
consisting of these segments, the unions of any arbitrary number of them
as well as the empty set constitutes the Euclidean topology on the line. It
is worth recalling that the line itself is the union of all the segments.
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6CHAPTER

Leonhard Euler
Felix Klein (April 25, 1849 – June 22, 1925) was a
German mathematician who made significant con‑
tributions to group theory, complex analysis, and
geometry. He introduced the Erlangen program, a
framework that unified various geometries through
symmetry, greatly influencing modern geometry.
Klein’s exploration of non‑Euclidean geometry chal‑
lenged traditional Euclidean concepts, leading to a
deeper understanding of geometry. In 1882, Klein
introduced the Klein bottle as a non‑orientable sur‑
face, expanding the possibilities for mathematical
exploration. Source:
https://en.wikipedia.org/wiki/Felix_Klein

H
INTS and solutions for activities are provided in this chapter. Solv‑
ing problems is at the core of mathematics. Students are encour‑
aged to try solving the problems independently or together and

use this section to check and compare their solutions with the correct an‑
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swers. Merely reading about problem‑solving is not sufficient for master‑
ing it, just like we cannot learn to swim solely from reading swimming
instruction books. We must throw ourselves into the water pool to learn
to swim. Similarly, we must dive into the sea of thought to tackle prob‑
lems by understanding the questions, reviewing the literature, and em‑
ploying various methods. If we find ourselves unable to solve a problem
after careful consideration, we can refer to the solutions offered in this
chapter. These hints and solutions are designed to guide learners, build
confidence, enhance engagement, cater to diverse learning styles, stimu‑
late critical thinking, and facilitate self‑paced learning.

6.1 Hints and solutions for Chapter 1

Solution to Activity 1.1

Figure 6.1 Shapes

Solution to Activity 1.2

For each of “D” and “O”, the end point is the same as the starting point.

96



“t” — 2024/4/11 — 8:47 — page 97 — #111

Hints and solutions for Chapter 1 6.1

Solution to Activity 1.3

The objects donut, straw, pretzel bagel, mug, and button all have holes.

Solution to Activity 1.4

Square, Tetris L‑piece, maze paths, Hopscotch layout, ladder, and spiderweb
all consist entirely of a single piece.

Solution to Activity 1.5

1. Knots used by surgeons to tie off blood vessels

2. Rock climbing knots

3. Knots used by sailors

Solution to Activity 1.6

The following actions involve only torsion, stretching, and bending.
1. Turning a sock inside out

2. Inflating a balloon

3. Bending a knee

4. Drawing a rectangle on a tennis ball

5. Drawing a triangle on a balloon and then blowing it up

Hint for Activity 1.7

A group of two or three students seems to be enough.
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6.2 Hints and solutions for Chapter 2

Hint for Activity 2.1

Share your examples with other students or teachers to ensure they are suit‑
able.

Solution to Activity 2.2

1 ∈ {1} , {1} ⊆ {1} , and {1, 1} = {1} holds true.

Solution to Activity 2.3

{1} ∈ {{1}} , {1} ∈ {{1}, 1} , and {1} ⊆ {{1}, 1} holds true.

Solution to Activity 2.4

Figure 6.2 Intersection and union of sets
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Solution to Activity 2.5

Figure 6.3 Mutually intersecting sets

Solution to Activity 2.6

Note that A − B = ∅ in the left figure.

Figure 6.4 Subtraction of two sets
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Solution to Activity 2.7

The set A ∩ B is hatched in brown, B ∩ C in purple, and C ∩ A in yellow.
The set A ∩ B ∩ C is hatched with a mixture of brown, purple, and yellow in
the center of Figure 6.5.

Figure 6.5 Union of three sets

Solution to Activity 2.8

The set A ∪ B is hatched in purple, B ∪ C is hatched in liver, and C ∪ A is
hatched in Greenish blue. The set A ∪ B ∪C consists of the area in Figure 6.5
shaded with at least one of the above colors.

Figure 6.6 Union of three sets
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Solution to Activity 2.9

1.

Figure 6.7 A one‑to‑one correspondence

2.

Figure 6.8 A one‑to‑one correspondence

3. It is not possible to establish any one‑to‑one correspondence between a
finite set and an infinite set. One can refer to the story of Hotel Infinity
to understand what might happen when we try to accommodate a new
guest entering a hotel where all rooms are already occupied; see https:
//www.youtube.com/watch?v=Uj3_KqkI9Zo.

Figure 6.9 There is no one‑to‑one correspondence
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Solution to Activity 2.10

Items 2, 3, 5, 6, 7, and 8 are finite sets, while the rest of the items are infinite
sets.

Solution to Activity 2.11

Both sets are infinite since there is a distinct number c between every two
numbers a and b (for example, let c = (a + b)/2 ).

6.3 Hints and solutions for Chapter 3

Solution to Activity 3.1

In Figure 6.10,
1. black curve,

2. blue curve,

3. green curve.

Figure 6.10 Curves through points

Hint for Activity 3.2

You may refer to https://krazydad.com/mazes/.
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Solution to Activity 3.3

1. No, it is a simple closed curve.

2. The pink closed curve intersects the green open curve in Figure 6.11.

Figure 6.11 Intersecting closed and open curves

3. The orange and blue closed curves intersect each other in Figure 6.12.

Figure 6.12 Intersecting closed curves

Solution to Activity 3.4

In Figure 6.13,
1. green curve,

2. red curve.

Figure 6.13. oriented simple closed
curves
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Solution to Activity 3.5

The required curves are shown in Figure 6.14. More precisely,

1. the yellow curve, 2. the green curve,

3. the black curve, 4. the pink curve,

5. the blue curve, 6. the gray curve,

7. the green curve, 8. the red curve.

Figure 6.14 Points and curves

Solution to Activity 3.6

Figure 6.15 Interior and exterior of a curve
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Solution to Activity 3.7

The black curve
in Figure 6.16.

Figure 6.16 Illustrating the Jordan curve theorem

Solution to Activity 3.8

Figure 6.17 Neighborhoods of given points

Solution to Activity 3.9

Interior points, exterior points, and boundary points are given in red, blue,
and yelllow, respectively in Figure 6.18.

Figure 6.18 Interior points, exterior points, and boundary points
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Solution to Activity 3.10

Figure 6.19 Interior, exterior, and boundaries of specific sets

Solution to Activity 3.11

It is important to ensure that each neighborhood is entirely contained in the
corresponding blue region.

Figure 6.20 Open regions

Solution to Activity 3.12

For any red region in Figure 6.21, there is no neighborhood around the given
point that is completely contained in the region.

Figure 6.21 Nonopen regions
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Solution to Activity 3.13

Consider a point P in the interior of the orange‑colored region. There is a
yellow‑hatched neighborhood of P that is entirely contained in the orange‑
colored region. Each point A in this yellow‑hatched neighborhood is also
an interior point of the neighborhood, and therefore of the orange‑colored
region itself. Consequently, the yellow‑hatched neighborhood is contained
in the interior of the orange‑colored region. Thus, the interior of this region
is open, as shown in Figure 6.22. One can similarly prove that the exterior is
also open.

Figure 6.22 Interior and the exterior of a region

Solution to Activity 3.14

The boundaries of regions are depicted in a darker color in Figure 6.23.
These regions contain their boundaries, making them closed.

Figure 6.23 Closed regions
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Solution to Activity 3.15

In each region, we observe that every neighborhood of the given point inter‑
sects both the region and its complement (blue points). Hence these points
are considered boundary points but they do not belong to the region.

Figure 6.24 Nonclosed regions

Solution to Activity 3.16

Region 1 is open, Regions 2, 3, 5, and 6 are closed, and Region 4 is neither
open nor closed.

Figure 6.25 Types of regions
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Solution to Activity 3.17

1. Suppose Gn represents the green band shown in Figure 6.26 with a width
of 2

n . Hence, G1 has a width of 2
1 , G2 has a width of 2

2 , G3 has a width
of 2

3 , and so on. The intersection of G1, G2, . . . is a line (the Y ‑axis), which
is not open in the plane.

Figure 6.26. The intersection of an arbitrary number of open sets may be not
open.

2. Suppose Fn denotes the pink band shown in Figure 6.27 starting from
the point −1 + 1

n and ending at the point 1 − 1
n . The union of F1, F2, . . .

forms the open band from −1 to 1 , which is not closed in the plane.

Figure 6.27. The union of an arbitrary number of closed sets may be not closed.
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Solution to Activity 3.18

Figure 6.28 Separating points by neighborhoods

Solution to Activity 3.19

Figure 6.29 Bounded and unbounded regions in the plane

Solution to Activity 3.20

Figure 6.30 A connected region (left) and a disconnected region (right)
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Solution to Activity 3.21

Regions 1 and 2 are connected and regions 3 and 4 are disconnected.

Solution to Activity 3.22

In Figure 6.31, the left region has one connected component, while the right
region has two connected components.

Figure 6.31 Examples of connected and disconnected regions

Solution to Activity 3.23

A curve can be considered as a region in the plane. In Figure 6.32, the region
on the left is compact while the region on the right is not compact because it
is not closed (the identified point is a boundary point that does not belong to
the region).

Figure 6.32 Examples of compact and noncompact sets
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Solution to Activity 3.24

The blue and green regions are connected since they are both closed and
bounded. The middle region, colored in red, is not compact because there
are boundary points at the bottom side that do not belong to the shape.

Solution to Activity 3.25

1. A basketball,

2. a mug,

3. the space,

4. a broken key.

6.4 Hints and solutions for Chapter 4

Hint for Activity 4.1

Take a regular rubber band. Then twist and release it.

Hint for Activity 4.2

Triangles, rectangles, and circles are topologically equivalent because they
can be continuously transformed into each other without altering their topo‑
logical properties.

Hint for Activity 4.3

This activity demonstrates the concept that shapes can undergo continuous
transformations while remaining equivalent in topology.
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Solution to Activity 4.4

The shape “i ” has a component number of 2 (since it is composed of two
separate pieces), while the shape “u” has a component number of 1 (since
it is a connected shape). Therefore, these shapes are not (topologically)
equivalent.

Solution to Activity 4.5

The red shape has a component number of 3, while the blue shape has a
component number of 2. Thus, these shapes are not (topologically) equiva‑
lent.

Solution to Activity 4.6

The red shape has a disconnecting point of index 3, as shown in Figure 6.33,
while the green shape does not have such a point.

Figure 6.33 Application of disconnecting points

Solution to Activity 4.7

The letter X has a disconnecting point of index 4 (red point), while Y and
Z do not have such points. The letter Y has a disconnecting point of index
3 (red point) but X and Z do not have such points.
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Solution to Activity 4.8

The letter “A” has two disconnecting points of index 3, as shown in Figure
4.15, but the letter “E” only has one such point. Thus, they are not (topologi‑
cally) equivalent.

Figure 6.34 Curves having different index of disconnecting point

Solution to Activity 4.9

The shape on the left has a genus number of 0, while the shape on the right
has a genus number of 2. Thus, these shapes are not topologically equivalent.

Solution to Activity 4.10

The genus numbers of brick, fork, glass, and ring are 10, 0, 0, and 1, respec‑
tively.

Solution to Activity 4.11

The winding numbers of the closed curve with respect to the points A, B, C,
D, and E are ‑1, +2, ‑1, +1, and +1, respectively.
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Hints and solutions for Chapter 4 6.4

Hint for Activity 4.12

Consider a curve that spirals around a point. The curve approaches the point
arbitrarily but never actually touches it. In this case, the curve effectively
wraps around the point an infinite number of times as it approaches.

Solution to Activity 4.13

V − E + F = 5 − 8 + 5 = 2

Solution to Activity 4.14

The graph on the right has a point, shown in Figure 6.35, whose degree is 6,
while the graph on the left has no such a point. Therefore, these graphs are
not topologically equivalent.

Figure 6.35 Degree of a vertice

Hint for Activity 4.15

Some good sources for this activity are https://www.youtube.com/watch?
v=-kA1_h1dZ58 and https://www.youtube.com/watch?v=XlQOipIVFPk.
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6 Hints and Solutions to Activities

Hint for Activity 4.16

Topologically speaking, having two holes in a soccer ball implies that there
are two distinct regions where the surface of the ball is cut through or punc‑
tured. If we imagine these holes as being close enough to each other, we
can consider them as a single, elongated hole. A stretching process turns the
soccer ball into a cylindrical shape.

Solution to Activity 4.17

A cube has 8 vertices, 12 edges, and 6 faces. Hence V − E+ F = 8− 12+ 6 =
2 for a cube. For a pyramid, we have V − E + F = 5 − 8 + 5 = 2 .

Hint for Activity 4.18

Add more edges by connecting the inner and outer squares of any two adja‑
cent faces.

Figure 6.36 Cube with a hole

Hint for Activity 4.19

Refer to https://en.wikipedia.org/wiki/Art_gallery_problem
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Hints and solutions for Chapter 5 6.5

Hint for Activity 4.20

In three‑dimensional space, it is impossible to attach a circle to the m‑
boundary of a Möbius strip without the surface intersecting itself.

Hint for Activity 4.21

Visit https://www.youtube.com/watch?v=AAsICMPwGPY.

6.5 Hints and solutions for Chapter 5

Solution to Activity 5.1

(a) The projection of a sphere (or ball) onto the two‑dimensional plane is
the set of points on and inside a circle.

(b) The projection of a hypersphere (or hyperball) onto the three‑
dimensional space is a sphere (or ball).

Hint for Activity 5.2

To create the Chefalo, take a rope, and form a simple loop. Next, twist the
loop so that it forms a helix‑like structure, and finally tie off the ends.

Hint for Activity 5.3

The symmetry properties of a knot can be used to explain topological dif‑
ferences. Some knots exhibit rotational symmetry or reflectional symmetry.
These symmetry properties are topological invariants that can distinguish
between different knot types.
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6 Hints and Solutions to Activities

Solution to Activity 5.4

1. 2.

Figure 6.37. Knot diagram of
granny knot

Figure 6.38. Tricolorability of
granny knot

Solution to Activity 5.5

1. 2.

Figure 6.39. Knot diagram of
square knot

Figure 6.40. Tricolorability of
square knot

Hint for Activity 5.6

Show that any two points in this set are separated by at least one removed
interval.
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Hints and solutions for Chapter 5 6.5

Solution to Activity 5.7

Yes, it satisfies all conditions of topology. This topology is called the Sier‑
piński topology.

Solution to Activity 5.8

No, {1} ∪ {2} is not in {∅, {1}, {2}} .

Solution to Activity 5.9

Yes, it satisfies all conditions of topology.

Hint for Activity 5.10

Some of the required topologies are discrete and indiscrete topologies. When
dealing with small values of n , one can manually count the number of
topologies. However, for larger values of n , it becomes computationally in‑
tensive.

Note

AI‑based tools have been used during proofreading.
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