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TWO–SIDED ESTIMATE OF THE WEYL–TYPE OPERATOR FOR p > q

AKBOTA ABYLAYEVA, ALISHER OTEGEN, AND MADI MURATBEKOV

Dedicated to Professor Lars-Erik Persson on the occasion of his 80th anniversary

Abstract. In this paper, the necessary and sufficient conditions for the boundedness of the Weyl-

type operator from the weighted space Lp,w = Lp,w(I) to the weighted space Lq,v = Lq,v(I) are

obtained for p > q .

1. Introduction

Let I=(a,b) , 0 ≤ a < b ≤ ∞ , 0 < α < 1 and let u and v almost everywhere be

locally integrable and positive functions on the interval I . Also, let be, 1 < p < ∞ ,

0 < q < ∞ and 1
p
+ 1

p′
= 1.

Lp,w is a weighted Lebesgue space with the norm ‖ f‖p,w := (
∫ b

a | f (x)|pw(x)dx)
1
p

< ∞ . Let us denote all functions f : I → R measurable in the interval I .

Moreover, W : I → R is non-negative, strictly increasing and let W be a locally

absolutely continuous function on the interval, for all x ∈ I , where
dW (x)

dx
= w(x) . In

the paper, from the space Lp,w = Lp,w(I) to the space Lq,v = Lq,v(I) , we consider the

following operator:

T f (x) :=

∫ b

x

(

ln
W(s)

W (s)−W(x)

)

β

u(s)W γ (s) f (s)w(s)ds

(W (s)−W (x))1−α
,

where x ∈ I , 0 < α < 1, γ ≤ β ≤ 0. Its dual position in the γ = 0 and interval (a,x)
of this operator is considered in the paper [3].

If u = 1,β = 0,γ = 0, the independent condition of our operator T , the operator

K becomes a fractional order integral operator of the function f with respect to the

function W :

K f (x) :=
∫ b

x

f (s)w(s)ds

(W (s)−W (x))1−α

,

where x ∈ I . The fact that this operator K is measured from the space Lp,w to the space

Lq,v was obtained in the scientific paper [1].
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If the operator K contains W (x) = x , this operator becomes the Weyl operator.

The boundedness and compactness of the Weyl operator and its dual, the Riemann–

Liouville operator, for different parameters p and q and different conditions on the

weight functions were proven in [2] and [4–8].

Now we assume that the function W is positive strictly increasing and locally

absolutely continuous function on I and lim
x→+0

W (x) = 0.

The inequality of the form A≤ cB is written in the form A≪B , where the positive

constant c may be dependent on the parameters p , q , α , β , γ and the relation A ≈ B

means that A ≪ B ≪ A . We denote the set of all integer number by Z , and χE is the

characteristic function of the set of E .

2. Auxilliary statements

Also, together with the operator T , we consider Hardy type operators H that map

from the space Lp,w = Lp,w(I) to the space Lq,v = Lq,v(I) as follows:

H f (x) :=W β (x)
∫ b

x
u(s)W γ+α−β−1(s) f (s)w(s)ds, x ∈ I.

In addition, we consider the properties of the function ln
(

W(s)
W (s)−W(x)

)

, where

ln
(

W (s)
W(s)−W(x)

)

=
∫ x

0
w(t)dt

W(s)−W(t)
, if s > x ≥ 0. Accordingly, we have the following in-

equality:

W (x)

W (s)−W (x)
≥ ln

(

W (s)

W (s)−W(x)

)

=
∫ x

0

w(t)dt

W (s)−W(t)
≥

W (x)

W (s)
, s > x > 0.

The function ln
(

W(s)
W (s)−W(x)

)

increases with respect to the variable x and de-

creases with respect to the variable s . Also, the functions 1
W(x)

ln
(

W (s)
W (s)−W(x)

)

and

W (s) ln
(

W (s)
W (s)−W(x)

)

increase with respect to the variable x and decrease with respect

to the variable s for s > x > 0. Indeed:

∂

∂ s

(

W (s) ln

(

W (s)

W (s)−W (x)

))

= w(s) ln

(

W (s)

W (s)−W (x)

)

−
w(s)W (x)

W (s)−W (x)
< 0,

∂

∂x

(

1

W (x)
ln

(

W (s)

W (s)−W (x)

))

=
w(x)

W 2(x)

(

W (x)

W (s)−W(x)
− ln

(

W (s)

W (s)−W (x)

))

> 0

for x ∈ (0,s) .

THEOREM A. Let 0 < q < p < ∞, p > 1 . Then the Hardy-type operator H is
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measurable from the space Lp,w to the space Lq,v if and only if B < ∞ , where:

B =





∫ b

a

(

∫ b

z
up′(s)W p′(γ+α−β−1)(s)w(s)ds

)

q(p−1)
p−q

×

×

(

∫ z

a
W qβ (x)v(x)dx

)
q

p−q

W qβ (z)v(z)dz

)

p−q
pq

.

Moreover, ‖H‖ ≈ B.

3. The boundedness of the operator T in the case q < p

The main result of this section is given in the following theorem:

THEOREM 1. (Main) 0 < q < p < ∞,0 < α < 1,γ ≤ β ≤ 0, p >
1
α

and u be a

non-decreasing (positive) function in the interval I . Then the operator T is bounded

from the space Lp,w to the space Lq,v if and only if B < ∞ . Moreover, ‖T‖ ≈ B.

Proof. Necessity: Let the operator T be bounded from the space Lp,w to the space

Lq,v . Then, using the properties of the function ln
(

W (s)
W (s)−W(x)

)

for s > x > 0, we

obtain the inequality 1
(W(x)−W (s))1−α

≥ 1
(W(x))1−α

for all x ∈ I . Accordingly, we have

the inequality T f (x) ≥ H f (x) for all x ∈ I with respect to the operator T for f ≥ 0

and the Hardy-type operator H , where the operator H is bounded from the space Lp,w

to the space Lq,v and becomes ‖T‖ ≫ ‖H‖ . Therefore, by Theorem A, B < ∞ and

‖T‖≫ B . Thus, the necessity is fulfilled.

Sufficiency: Let B<∞ . Since the function W is continuous and strictly increasing

on interval I and W (a) = 0, then for any k ∈ Z the set {x : W (x) ≤ 2k,x ∈ I} is non-

empty. Denoting xk = sup{x : W (x)≤ 2k,x∈ I} we obtain a sequence of points {xk}k∈Z

such that 0 < xk ≤ xk+1 , ∀k ∈ Z and if xk < b , then W (xk) = 2k , 2k ≤ W (x) ≤ 2k+1

for xk ≤ x ≤ xk+1 ,
∫ xk

xk−1
w(s)ds = 2k−1 and if xk+1 = b , then

∫ xk+1
xk

w(s)ds ≤ 2k . These

facts will be used below without reminders. We assume that Ik = [xk,xk+1) , k ∈ Z . If

k∞ = inf{k ∈ Z : supx>0 W (x)≤ 2k} , then k+1 ≤ k∞ for 0 < xk ≤ xk+1 . Then, without

loss of generality, if k∞ = ∞ , then I =
⋃

k∈Z Ik =
⋃

k∈Z[xk,xk+1) .

Accordingly, let f ∈ Lp,w and f ≥ 0, then for relations xk ≤ x ≤ xk+1 , xk−1 < xk

and (a+ b)q ≤ 2q−1(aq + bq) by the inequality:

‖T f‖q
q,v = ∑

k

∫ xk

xk−1

v(x)

∣

∣

∣

∣

∣

∣

∣

∫ xk+1

x

(

ln
W (s)

W (s)−W(x)

)

β

u(s)W γ (s) f (s)w(s)ds

(W (s)−W (x))1−α

+

∫ b

xk+1

(

ln
W(s)

W (s)−W(x)

)

β

u(s)W γ(s) f (s)w(s)ds

(W (s)−W(x))1−α

∣

∣

∣

∣

∣

∣

∣

q

dx
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≤ 2q−1





∑

k

∫ xk

xk−1

v(x)

∣

∣

∣

∣

∣

∣

∣

∫ xk+1

x

(

ln
W (s)

W(s)−W(x)

)

β

u(s)W γ (s) f (s)w(s)ds

(W (s)−W (x))1−α

∣

∣

∣

∣

∣

∣

∣

q

dx

+ ∑

k

∫ xk

xk−1

v(x)

∣

∣

∣

∣

∣

∣

∣

∫ b

xk+1

(

ln
W (s)

W (s)−W(x)

)

β

u(s)W γ (s) f (s)w(s)ds

(W (s)−W (x))1−α

∣

∣

∣

∣

∣

∣

∣

q

dx







= 2q−1(J1 + J2),

where J1 and J2 are the first and second terms, respectively.

Now we estimate the expressions J1 and J2 separately from above. First, we

estimate the expression J2 , where W (xk) = 2k and taking into account the conditions

xk−1 ≤ x ≤ xk , we use the monotonicity of the function 1
W (x)

ln
(

W(s)
W(s)−W(x)

)

, we make

the following transformation:

J2 = ∑

k

∫ xk

xk−1

v(x)

∣

∣

∣

∣

∣

∣

∣

∫ b

xk+1

(

1
W (x) ln

(

W (s)
W(s)−W(x)

))

β

u(s)W γ(s)W β (x) f (s)w(s)ds

(W (s)−W (x))1−α

∣

∣

∣

∣

∣

∣

∣

q

dx.

Using the arguments and computations from [1] and [3], we estimate the expression J2

from above.

J2 ≤
∫ b

a
v(x)W β (x)

∣

∣

∣

∣

∫ b

x
u(s)W γ+α−β−1(s) f (s)w(s)ds

∣

∣

∣

∣

q

dx = ‖H f‖q

(q,v)
,

then ‖H f‖q

(q,v)
≪ Bq‖ f‖q

(p,w)
according to Theorem A. Thus, J2 ≪ Bq‖ f‖q

(p,w)
. Simi-

larly, following the aforementioned, and using the arguments and computations from [1]

and [3], we also estimate the expression J1 from above:

J1 = ∑

k

∫ xk

xk−1

v(x)

∣

∣

∣

∣

∣

∣

∣

∫ xk+1

x

(

ln
(

W (s)
W (s)−W(x)

))

β

u(s)W γ (s) f (s)w(s)ds

(W (s)−W (x))1−α

∣

∣

∣

∣

∣

∣

∣

q

dx ≪ Bq‖ f‖q
p,w.

Then from the calculated integral
∫ b

a v(x)|T f (x)|qdx≤ 2q−1(J1+J2) and the found

inequalities J1 and J2 , we come to the following conclusion: ‖T f‖q,v ≪ B‖ f‖p,w .

Therefore, the operator T is bounded from the space Lp,w to the space Lq,v in the case

q < p . Moreover, since ‖T‖≫ B , then ‖T‖≪ B . Then we have ‖T‖ ≈ B and B < ∞ .

We have shown that sufficiency is fulfilled. The theorem is fully proved. �
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PREDICTING TENSILE MODULUS WITH KNOWN LOCAL

MATERIAL PROPERTIES OF FDM 3D PRINTED PARTS

JOACHIM JØRGENSEN ÅGOTNES, ERLEND ENTNER, AND GUY BEERI MAUSETH

Dedicated to Professor Lars-Erik Persson on the occasion of his 80th anniversary

Abstract. Experiments were conducted using Tough polylactide (PLA) material to determine
material constants, such as Young’s modulus and Shear modulus, based on different printing
orientations. Classical Laminate Theory (CLT) was then used to predict the tensile modulus
of samples with varying raster angles, and the results were compared with experimental data.
The CLT predictions showed a mean relative error of 4.26%, demonstrating its effectiveness in
estimating the mechanical properties of Fused Deposition Modeling (FDM)-printed components.
Future work will focus on addressing discrepancies observed in the tool-path behavior during
printing and investigating the impact of layer bonding on part performance.

1. Introduction

Fused Deposition Modeling (FDM) 3D printing is a popular additive manufactur-
ing process. Because of its ability to create complex geometries that are cost-effective
and fast. Predicting the mechanical properties of FDM parts, however, is difficult. This
is due to the anisotropic nature of FDM parts [3].

To address these challenges, this paper explores the application of Classical Lam-
inate Theory (CLT) [7], a method traditionally used for composite materials, to model
the mechanical behavior of FDM-printed parts. By treating each printed layer as a
distinct lamina, CLT provides a framework for predicting the overall mechanical prop-
erties of printed components, taking into account the anisotropic behavior and specific
printing conditions.

2. Classical Laminate Theory

To predict the mechanical behavior of an entire laminated structure under exter-
nal loads, it is necessary to transform local material properties into a global coordinate
system. The global coordinate system represents the overall structure and can differ
significantly from the orientation of individual layers. Using transformation matrices,
CLT combines the local mechanical properties of each lamina into an overall response

Mathematics subject classification (2010): 74D99, 74E99, 74F99, 74B99, 74C99, 74Q99.
Keywords and phrases: tensile modulus; mechanics; laminate theory; 3D printing; fused deposition

modeling; mathematical modeling; convexity; effective properties.
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for the laminate, accounting for interactions between layers with different orientations.
This allows for the accurate prediction of mechanical behavior, such as stress and strain
distributions, in complex multilayered materials, making CLT a beneficial tool for ana-
lyzing the anisotropic behavior of FDM 3D-printed parts.

From the governing equation for plane stress (generalized Hooke’s Law), we have

σ12 = Qε12, (1)

where the matrix Q is the stiffness matrix in local coordinates, σ and ε are the stress
and strains, respectively.

(1) equates the principal stresses in the direction of the layered filament in the
local coordinate system. Transforming (1) into the global coordinate system can be
done using transformation. Generally, we seek to obtain

σxy = Qεxy,

where Q is Q transformed to the global coordinate system via

Q = T−1QRTR−1
,

where T is the transformation matrix and R is the engineering strain factorization ma-
trix [7]. From Q the effective Young’s modulus Ex can be calculated using determi-
nants and matrices formulas given by [7].

3. Experiment

Local material properties must be known to estimate the effective tensile modulus
Ex for a specimen using CLT. Specimens are printed using Tough PLA followed by the
procedure used in [4]. To initialize the CLT program, each material constant (E1 , E2 ,
and G12 ) must be accounted for. E1 , and E2 are determined by printing a specimen
in the longitudinal and transverse direction, respectively, as shown in Figure 1(a) and
Figure 1(b).

(a) Longitudinal E1 . (b) Transverse E2 . (c) Sequence of [±45]R E45 .

Figure 1: Different raster angles to determine the material constants E1,E2 and E45 .

To determine the shear modulus G12 , the printing sequence is set to a [±45]R
orientation, which yields the modulus E45 , as shown in Figure 1(c). According to [5],
G12 can be calculated from E1 , E2 , E45 and ν12 , where ν12 is set to 0.36 from [2].
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The initial experiments showed that the local material constants were E1 = 1008.621
MPa, E2 = 711.108 MPa, and that E45 = 740.300 MPa, which resulted in a Shear mod-
ulus G12 = 268.864 MPa.

Here CLT is used to estimate the Tensile modulus of a specimen with various raster
angles [0,±30,±60,0,90]R . Results from tensile testing are given in Table 1.

Property Specimen 1 Specimen 2 Specimen 3

Measured Tensile Modulus, E (MPa) 891.902 888.568 843.227
Mean values

Mean Measured Tensile Modulus, E (MPa) 874.566
CLT Predicted Tensile Modulus, ECLT (MPa) 837.340

Error

Mean Absolute Error (MPa) 37.226
Mean Relative Error (%) 4.26

Table 1: Comparison of CLT predictions and experimental tensile results

4. Conclusion

The predicted Tensile modulus from CLT was ECLT = 837.340 MPa. To evalu-
ate CLT computation, three specimens with line patterns and raster angles of [0,±30,
±60,0,90]R were printed and tested, yielding a mean Tensile modulus of 874.566 MPa.
This result had a relative error of 4.26% to the predicted modulus from CLT, suggesting
that CLT is a reliable mathematical model for determining the mechanical properties of
FDM 3D-printed parts.

5. Future Work

During the experiments, the effect of concave geometries on the FDM tool path
was observed, specifically the jumping between sections during printing of specimens,
see Figure 2. Observations showed that the tool path irregularities occurred at the same
location during the printing process. How this phenomenon affects the strength of the
printed part is of great interest in the future. Here, as in other parts of our work, we are
inspired to do the mathematical modeling by using modern ideas in convexity theory,
see [6].

1
1

2
1

2

3

1

2

3

Figure 2: Tool-path for FDM 3D-printer for line pattern with raster angle 0◦ .
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LOCAL APPROXIMATION PROBLEMS AND KOROVKIN–TYPE

THEOREMS IN FUNCTION SPACES: A SHORT SURVEY

FRANCESCO ALTOMARE

Dedicated to Professor Lars-Erik Persson with deep respect and friendship

Abstract. The paper is devoted to present a short survey on some very recent results concerning

local approximation problems by positive linear operators on function spaces. The implemented

methods are typical of those of the Korovkin-type approximation theory. Some applications and

open problems are illustrated as well.

1. Introduction and statement of the problem

Very recently, by implementing well-established methods arising from the Korov-

kin-type approximation theory ([1], [6]), in a series of papers ([2] - [5]) we investigate

local approximation problems by positive linear operators on function spaces.

The starting point is the following result due to P. P. Korovkin (see, e.g., [9]):

THEOREM. Given a real interval I , consider a linear subspace E of real-valued

functions on I containing the functions 1, e1(t) := t and e2(t) := t2 (t ∈ I ), and a

sequence (Ln)n≥1 of positive linear operators on E .

Given a compact subinterval K of I , if for every h = 1,e1,e2,

lim
n→∞

Ln(h) = h uniformly on K,

then

lim
n→∞

Ln( f ) = f uniformly on K

for every bounded function f ∈ E which is continuous on each point of K .

The most renowned theorem of Korovkin is a special case of the result above and

it concerns the particular setting where

I is compact, E =C(I) and K = I.

Mathematics subject classification (2010): 41A36, 47B33, 47B65, 60F99.

Keywords and phrases: positive linear operator; composition operator; approximation by positive lin-

ear operators; Korovkin-type theorem; Feller-type theorem.
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